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SUMMARY

The document presents a detailed description and the results of a test programme examining the
effect of complete grout filling of the chord members of tubular joints on SCF behaviour and
ultimate bending strength. The results have been used as a basis for generating new guidance or
confirming previously uncorroborated guidance in these areas. An initial study was performed
to investigate the effects of preload history on subsequent SCF behaviour so that appropriate
testing procedures could be specified with which to conduct the tests. A full test.programme
was conducted on five T joints and seven DT joints of various geometries (0.4 <3 < 1.0 and 12
< y < 26) fabricated to industry practice and using pipes up to 406mm in diameter, Typically,

each joint in the programme was subjected to the following tests:

. SNCF measurement, on both the brace and the chord sidés of the weld, in the as-welded
condition for axial compression, axial tension, in-plane bending (IPB) and out-of-plane
bending (OPB) on the braces.

. SNCF measurements in the grouted condition for the same four load cases following the

selected preload.
. An ultimate load test in either IPB or OPB.

A large test frame was specifically designed and fabricated to apply axial tension, axial
compression, IPB and OPB loads. The specimens were of relatively large scale (i.e. 406mm
diameter chord members). Specimen size is an important issue when considering local

behaviour such as SCFs and especially when grouted joints are involved.

All specimens .were instrumented with strip gauges and single element gauges. The strip
gauges contained five individual single element strain gauges at 2mm spacings, two of
which were unused. At each measurement location (e.g. chord crown) a strip gauge and a
single element gauge weré placed on a line orthogonal to the weld. The first gauge of the
strip was placed 0.4 x (T or t) but not less than 4mm. The single element gauge was

placed at the HSE recommended last gauge position.
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As-welded SCF/SNCF ratios are well documented so it remained to establish the
SCF/SNCEF ratio for specimens in the grouted condition. The first grouted specimen to be
tested was. instrumented with additional rosette gauges. The rosette gauges established that
the grouted SCF/SNCF ratio remains consistent with the as-welded ratio for all load cases.

In addition to strain gauges, transducers were mounted for measurement of deflection. The
deflection measurements were used to establish deformation local to the joint under axial

load or bending moment and overall deformation under bending.

Load cells, or strain gauges on tie rods/bars, were used to measure applied load for the

various load cases.

The first grouted specimen was subjected to a preload investigation to establish the effects
of loading history on measured strain concentration factors (SNCFs). SNCFs were
measured after each application of compression/tension preload. The preload levels were
increased in 10 - 20% increments of ISO predicted as-welded joint capacity up to
approximately 130%. The preload applied to the remaining specimens was based on the

results of the preload investigations.

Prior to the preload investigations, all specimens were subjected to as-welded SNCF
measurements. Table Summ-1 presents a summary of the derived as-welded SCFs with
predicted SCFs using Efthymiou and Lloyds parametric equations. The majority of
predicted as-welded SCFs are to within 15% of the measured values.

SNCF measurements were also taken for all specimens in the grouted condition. A number
of measurements were taken for each specimen for increasing preload levels. An
SCF/SNCF ratio of 1.2 was used to convert SNCFs to SCFs. Subsequent grouted SCFs
presented in Table Summ-2 represent those derived from measurements taken after a
preload level of 60% of ISO as-welded joint capacity. Table Summ-2 also presents the
derived grouted SCFs using formulations derived as part of the project. Typically the as-
welded SCF is smaller than the grouted SCF. The ratio of grouted SCF to as-welded SCF
is referred to as the Reduction Factor (RF). RFs derived from the measured grouted SCF

over measured as-welded SCF, and measured grouted SCF over as-welded SCF, derived
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using parametric formulae, were used to develop equations to predict RFs for the two

scenarios. Table Summ-3 presents the measured RFs and the derived RFs.

The final phase of testing consisted of ultimate strength tests. The specimens were tested in
either in-plane bending or out-of-plane bending. Table Summ-4 presents the measured
results and corresponding predicted values. The predicted values are well correlated to the

measured values.

The data from the programme are fully reported in various appendices and these have been
assessed to enable firm recommendations to be made with respect to estimating SCFs and
ultimate strength behaviour of grouted joints.
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NOMENCLATURE

D Outside diameter of chord
T Wall thickness of chord
T, Wall thickness of pile

T. Effective thickness

d Qutside diameter of brace

Wall thickness of brace

L

Gamma ratio = D/2T

B Beta ratio = d/D

T Tau ratio = t/T

SCF Stress concentration factor

SNCF Strain concentration factor -

cs Chord saddle

bs Brace saddle

cC Chord crown

be Brace crown

F, Yield stress

F, Ultimate stress

€ Permanent elongation

ipb In-plane bending

opb Out-of-plane bending

ax-c Axial compression

ax-t Axial tension

8 Brace/joint intersect angle
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INTRODUCTION

The modification, strengthening and repair of existing offshore installations has
received significant attention and forms an important and integral part of offshore
engineering. The need for strengthening/repair stems from increased load by
placement of additional equipment, increase in operational safety, increase in
operational service life, damage and/or regulatory requirements. It has increasingly
been recognised that chord grout filling offers an extremely technically-efficient and
cost-effective method to meet these strengthening/repair requirements for tubular
joints. However, there is little or no guidance available in codes, guidance
documents or the technical literature. This is not surprising, as the available
pertinent data relate to a single K joint, two T joints and one DT joint. The DNV
research in this area in the early 1980s related to double-skin tubular joints only,
subjected to axial loads only, and is therefore not applicable to the
strengthening/repair of tubular joints, which requires the chord of the joint to be
completly grout filled over a characteristic length. One project conducted in the
later 1970s/early 1980s remains confidential. However, the dominant data
generated in that project relate to double-skin joints or joints with y ratios well in
excess of ratios which cover current practice and, therefore, the data which fall in
these two categories are equally unapplicable. An examination of the few available

date and field experience in this area revealed the following:

* The presence of the grout increases the radial stiffness of the chord
member. The grout restricts local chord wall deformations, which leads to a

reduction of deformation-induced bending stresses and associated SCFs.
. Any reduction in SCF implies an enhancement in fatigue life.

. The chord member bending stiffness is increased, resulting in a reduction of
stress at crown locations which are driven by the « ratio. The increased
chord bending stiffness also implies that the capacity of large B ratio,
grouted T/Y joints, subjected to axial loads, may not be limited by chord

failure in the beam-bending sense.
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. The grout severely restricts ovalisation of the chord cross-section, which
indicated an increase in the capacity of grouted joints when compared with

the ungrouted cases.

. The data available indicated that fatigue lives of grouted joints may be
increased by over 10-fold when compared with equivalent ungrouted joints.
These data also indicated substantial enhancements in joint strength and joint
impact resistance, to the extent that, in perhaps the majority of cases, the

capacity of the joint is greater than the capacity of the in-coming braces.

. Grouting technology is well proven and offshore grouting works can be

executed with confidence.

* The deployment of this technique offshore has low equipment and resource
requirements compared with other techniques and, hence, significant cost

savings can be accrued.

. This technique is amenable to deployment using ROV technology with no

diver intervention, resulting in substantial safety and costs benefits.

’ A study of offshore installation times indicate that this technique can be
implemented offshore within a time frame which is less that half the time
required to implement other comparable techniques. The cost benefits in

this respect are self-evident.

In response to the above observations, the identified need and the identified
substantial economic, safety and technical benefits, MSL Engineering (MSL)
launched a joint industry initiative to develop grouted joint technology as a
repair/strengthening measure, The primary objectives of this project were, firstly,
to generate specific data and information on grouted joint behaviour to develop a
detailed design practice for the practical range of applications and parameters and,
secondly, to develop and prepare a deployment procedure to ensure safe, cost-
effective and technically-compliant applications. The offshore installation study was

completed and documented in a separate report.
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Description of Test Programme

Experimental work has been conducted to determine the effects of grout filling of
chord members on the stress concentrations at brace-chord intersections and on the
bending strength. The experimental programme consisted of a series of as-welded
SNCF measurements, grouted SNCF measurements and ultimate strength tests on T
and DT joints. The specimen test matrices are summarised in Table 1-1 and 1-2.
The test series consisted of seven DT-joints and five T-joints, with nominal values
of the following geometrical parameters: § = 0.41, 0.67 and 1.0, y = 12.7, 20.3
and 25.7 and T = 1.0.

Test series for T joints 1=1.0
y B =0.41 B =0.67 =10
12.7 T1 T3
20.3 T5
25.7 T7 T9
Table 1-1:  Test matrix for T-joints - Specimen Designation
Test series for DT joints t=1.0
Y B =0.41 B = 0.67 B=1.0
12.7 DT2 DT3
20.3 DT4 DTS DTé6
25.7 DT8 DT9
Table 1-2:  Test matrix for DT-joints - Specimen Designation

The configuration and dimensions of the specimehs are presented in Figure 1-1 for
the T-joints and in Figure 1-2 for the DT-joints. The chord length was equal to 6
times the chord diameter. The brace length was 5 times the brace diameter. The
specific selection of the joint parameters was dictated to a degree by the availability
of pipe sizes and material strengths. The resultant joint parameters were optimised,
where possible, to facilitate joint failure rather than brace failure during the ultimate
strength tests. Generally, the brace tubulars were of a higher yield strength than the
chord tubulars. This increased the likelihood of a joint failure without affecting the

Page 17 of 98
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1.2

1.2.1

1.2.2

measured SNCFs. The chosen size of tubulars resulted in large scale specimens
which minimises potential scale effects. However, the specimens were kept to a
size which enabled the test rig to assume sensible proportions. The resultant test rig
was substantial due to the size of specimens and to satisfy the requirement of having

the ability to test in all four loading modes with the specimens remaining in-situ.

Background

Existing Guidance

The provisions of major design codes on any aspect of grouted joints are limited.
API RP2A", HSE Guidance Notes®, NPD® and DNV all state that the capacity
of grouted joints may be established by testing and/or analytical methods.

With the exception of Lloyds(s’, no specific guidance on the determination of
stresses is given. Lloyds provides guidance to cover double-skin joints only. Lloyds
recommend the determination ot-' an effective thickness” which gives the same
moment of inertia as that calculated from treating the chord shell and pile as a
composite section, but neglecting grout. Lloyds recommend that the effective
thickness calculated on this basis should be limited to 1.75T. The resultant effective
thickness is then used in parametric SCF equations developed for as-welded joints.

Previous Research

A number of research and development programmes have been carried out to
investigate the behaviour of grouted joints. The research has typically been
conducted on double-skin ‘pile sleeve’ type joints or ad hoc tests on individual
grouted joints commissioned by Operators with geometries specific to offshore

platform joints requiring strengthening.

Results from the EEC Composite Jacket Project® are confidential, although general
trends noted from the findings are described. A series of elastic, ultimate strength

and fatigue tests on either double-skin or fully grouted joints have been carried out.
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It is understood, however, that a portion of the experimental programme
concentrated on thin chord sections, giving y ratios in excess of the ratios for joints

in existing offshore installations.

A Veritec joint industry project has addressed the elastic, ultimate strength and
fatigue response of double-skin grouted joints through both experimental and

numerical means.

Tebbett et al” summarise the results of ten T joint tests, in which the chords of five
specimens were reinforced with a grouted pile, i.e. grout was placed in the annulus

and in the pile. Unfortunately, no thickness values for the joints are given in the
paper.
Lalani et a1® report on a series of elastic tests (axial and bending) and an ultimate

balanced axial load test on a non-overlapping grouted K-joint.

References 9 and 10 report on a series of elastic tests (axial and bending) on a

grouted T joint.

Marshall'? reviews SCF formulations for simple steel reinforced and double-
skin/grouted joints. Marshall proposed that the vy value in SCF equations can be
modified to take account of the additional stiffness for grouted joints. The effective
thickness is defined as:

T, = (T° + THM™

The effective thickness is limited to 2T, compared with the Lloyds’ limitation of
1.75T.

Brown et al''? report on a series of elastic tests (axial and bending) and fatigue tests

on two grouted T joints.
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Review of the available literature indicates that much of the testing reported is of an
ad hoc nature and addresses technology speciﬁt_: to an identified problem. In
particular, the number of tests carried out on fully grouted specimens with varying

geometric parameters are limited.
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2.1

2.2

TEST SPECIMENS

T-Joints

The configuration and nominal dimensions of the T-joints are shown in Figure 1-1

and Table 2-1. The chord léngth is equal to 6 times the chord diameter, i.e.

a=2L/D=12. The brace length is equal to 5 times the brace diameter.

Test series and nominal dimensions for T-joints - Dimensions in (mm)

Chord B =041 B =0.67 B=1.0
y = D/2T | Braces [ Specimen | Braces | Specimen | Braces | Specimen
406.4x16 12.7 168.3x16. T1 406.4x16. T3
406.4x10 20.3 273x10. TS
406.4x7.9 | 25.7 168.3x8. T7 406.4x7.9 T9
Table 2-1: Nominal dimensions for T-joints

DT-Joints

The configuration and nominal dimensions for the DT-joints are shown in

Figure 1-2 and Table 2-2. Thé chord length is equal to 6 times the chord diameter,

i.e. a=2L/D = 12. The brace length is equal to 5 times the brace diameter.

Test series and nominal dimensions for DT-joints - Dimensions in (mm)

Chord B =041 B = 0.67 B=10
¥y = Braces | Specimen | Braces | Specimen Braces | Specimen
D/2T '
406.4x16 12.7 273x16. DT2 406.4x16. DT3
406.4x10 | 20.3 [168.3x10.| DT4 |273x10 DTS 406.4x9.5 DTé6
406.4x7.9| 257 273x7.8f DT8 406.4x7.9 DT9
Table 2-2:  Nominal dimensions for DT-joints
C14100R020 Rev 1 February 1997 Page 22 of 98
et




e

C14100R020 Rev 1 February 1997

23

Wélding of Test Specimens

The weld design is based on full brace capacity, which is dependent upon the brace
dimensions and material strength. All welding was carried out using shielded metal
arc welding (SMAW), in welding position 2G (axis of the weld horizontal) ‘in
accordance with section 5.8 of ANSI/AWS D1.1-90 Structural Welding Code for
Steel™”. The welding sequence for the tubular connection is shown in Figure 2-1,

and the weld details for the T-joints and DT-joints are shown in Figure 2-2. The
welding procedures and weld profiles are presented in Appendix A.

Figure 2-1:

Welding sequence
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Figure 2-2: Welding details of T-joints and DT-joints -

The locations correspond to the positions identified in Figure 2-3.

Crown
) Brace I cc;l
15 ‘3/ / __bel
- s 5 CS;S bS,S
Saddle. / (cs;13)|  (bs;13)
-/\ - brace
1 ' 7 _ — be9
9 l cc9
chord
chord .

Note: Weld shapes measured at 45° intervals around joint intersect

Figure 2-3: Location of weld shapes

C14100R020 Rev 1 February 1997 | Page 24 of 98




v

2.4

Grouting of Test Specimens

A detailed description of the grouting procedure for the chord grout-filling of the
tubular joints is given in Appendix B. The grouting of the 5 T-joints and 7 DT-
joints was done on November Ist 1995 at the TNO laboratory by Halliburton. The
grouting spread is illustrated in Figure 2-4. The duration of grouting the twelve test
specimens was approximately two hours. Four cubes were taken from each batch
mixed and eight cubes from each test specimen. The majority of mix batches
completely filled two chords. The grout was taken from the outlet in order to

determine the compressive strength.

All chord tubulars were grouted in the upright position with grout injection at the
base. The chords were filled with potable water prior to grouting. The water was
displaced through outlets at the top of the chords as the grout was injected. During
the grouting procedure, two additional tubulars (D = 350mm) were grouted.
Approximately six months after grouting, one tube was sliced open. Figures C-1
and C-2 in Appendix C present the sliced sections. No crack was observed in the
grout core but an extremely fine gap between the grout core and inside wall of the

tubular was found.

The chosen grout was Oilwell G cement with a specific gravity of
2.02 + 0.02. The specific gravity was measured during the grouting of the test
specimens, in accordance with the grouting procedures, using a pressurised mud-

balance. The measured specific gravity for each batch is presented in Table 2-3.
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Specific gravity

Batch Specimen Specific gravity
at pump at outlet
1 2.03 350 tubular 1 1.99
350 tubular 2 2.0
2 2.02 TS5 2.0
3 2.02 T3 2.0
DT4 2.0
4 2.03 T9 2.0
DTS 2.0
5 2.02 DT2 2.01
DTS5 2.01
6 2.02 T7 2.0
T1 2.01
7 2.02 DTS 2.0
DT6 2.0
8 2.02 DT3 2.0
Table 2-3:  Specific gravity of the grout

During the first few days of curing, external temperature measurements were taken

on one of the dummy steel tubes. These are presented in Table 2-4.

Hours

after grouting

Average External Temperature

[°C] on pipe

0 17
2 21
3 23
7 -46
16 55
21 48
25 45
45 25
74 20

Table 2-4:

Temperature measurements during curing of the grout

C14100R020 Rev 1 February 1997

Page 26 of 98

i

i

i)
I
sl i

A

iy
i

]

I
i

hdidl

_




Figure 2-4; Equipment used for grouting
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2.5  Material Properties
2.5.1 Circular Hollow Sections

The circular hollow sections used for the specimens were hot-finished

tubes in accordance with API-5L Gr. X52N or steel grade Fe 510 D

seamless steel

in accordance

with Euronorm EN 10025 (or prEN 10210 draft). The actual mechanical properties

F, (yield stress), F, (ultimate stress), permanent elongation & and necking of the

different circular hollow sections was determined by tensile tests (dp 5) and carried

out in accordance with Euronorm EN 10.002 "Tensile tests for steel". The tubular

sections were provided with mill certificates. The nominal and the actual material

properties of the different tubulars are tabulated in Appendix D.

The coupon test results are summarised in the following Table 2-5.

Specimen Yield str. (Fy) Yield str. (Fy) Ult. str. (Fu) Ult. str. {Fu)

Brace Chord Brace Chord

Tl 347.8 358.5 520.3 507.1
T3 383.3 358.5 581.6 507.1
TS5 283.6 334.5 408.0 427.0
T7 245.6 331.6 405.1 499.5
T9 331.6 331.6 499.5 499.5
DT2 495.5 358.5 585.2 507.1
DT3 383.3 358.5 581.6 507.1
DT4 339.4 334.5 550.0 427.0
DT5 283.6 334.5 408.0 427.0
DTé6 363.4 334.5 508.2 427.0
DT8 328.5 331.6 509.9 499.5
DT9 331.6 331.6 499.5 499.5

Table 2-5: Tensile coupon tests referenced by test specimen (MPa)

2.5.2 Grout

The results of the cube tests are presented in Appendix C. The cube test resuits are

summarised in the following Tables 2-6 and 2-7.
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Batch Age Specimen Average
7 day - 23.95
DRUM 14 day - 33.80
21 day - 40.00
28 day - 35.00
1 28 day S-D1/D2 45,77
2 28 day T3 33.60
3 28 day T3 DT4 35.50
4 28 day T9 DT$§ 37.07
5 28 day DT2 DT5 39.10
6 28 day T7 T1 37.50
7 28 day DT9 DT6 35.00
8 28 day DT3 38.57
Table 2-6:  Compressive strength per batch after 7, 14, 21 and 28 days
(MPa)
Specimen Average
T1 39.05
T3 37.15
T5 43.25 )
T7 43.58
T9 41.50
DT2 45.48
DT3 51.23
DT4 39.08
DTS 49.43
DT6 44.95
DT8 46.93
DT9 49.05
Table 2-7:  Compressive strength at time of ultimate test
(MPa)

Table 2-6 presents the average compressive strengths using cubes taken from batch
mixes. With the exception of specimens TS and DT3 all batches were sufficient for
the filling of two specimens. The results for the joint specimen cubes were obtained
28 days after filling of the chords. Table 2-7 presents the average compressive
strengths obtained by testing the relevant grout cubes at the time of the joint
specimen ultimate strength test. The age of the cubes range from 3 months to 7

months.
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2.5.3 Welds

2.6

All specimens were welded by SMAW process. Test specimens T1, T3, T5, DT2,
DT3, DT4, DTS5 and DT6 were welded with a KRYO 1 electrode and specimens
T7, T9, DT8 and DT9 were welded with a Safdry 58 electrode.

The welding procedures are presented in Appendix A

Measured Dimensions

2.6.1 Circular Hollow Sections for the Specimens

The actual dimensions for the T-joints and DT-joints were determined by measuring
the wall thickness and diameter at several locations on the test specimens and on
separate pieces of left-over pipe material, from which the specimens were
fabricated. (These separate pieces were used for the determination of material -
properties). For the fabrication of test specimens, eleven different tubulars were
used. Wall thickness measurements were taken using a micrometer for the DT-joint
chords at 90° intervals at one chord end. These were combined with micrometer
measurements taken at 90° intervals on each end of the associated tubulars used in
specimen fabrication to provide an averaged wall thickness. In addition the chord
and brace wall thicknesses were measured using ultra-sonic methods. The
measurements were taken at 90° intervals at near to the fabricated specimen joint.

The results are presented in Appendix E.

The following Table 2-8 presents a summary of diameter and wall thickness

measurements.
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Specimen Chord Brace
D T d t
T1 406.78 16.39 167.81 16.32
T3 406.78 16.39 407.02 16.10
T5 407.05 10.19 237.34 0.82
T7 406.96 7.86 168.41 8.31
T9 406.96 7.86 406.96 7.86
DT2 406.78 16.39 273.09 15.76
DT3 406.78 16.39 407.02 16.10
DT4 407.05 10.19 168.57 9.95
DTS 407.05 10.19 273.34 0.82
DT6 407.05 10.19 407.60 9.61
DT8 406.96 7.86 273.21 7.88
DT9 406.96 7.86 406.96 7.86

Table 2-8: Summary of the average actual dimensions

- 2.6.2 Welds

The actual weld shapes at the crown and saddle location, and also between these

locations for the B=1.0 specimens, are presented in Appendix A for each test

specimen.
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3.1

INSTRUMENTATION

Strain Gauges

Little test data exists for SNCF measurements on grouted tubular joints. The

@204 9) gtates that the nearest gauge should be

guidance available for as-welded joints
located at a minimum of 4mm from the weld toe in order to avoid the concentrating
effect of the weld. The available guidance also gives recommendation for gauge
positioning in the region of stress variation, between the region effected by the weld
and where the stress becomes equal to the nominal stress. Puthli et al’? go one step
further by giving guidance for the location of gauges to enable non-linear
extrapolation, i.e. quadratic'extrapolaﬁon. Strain gauge positions were chosen to

bound the possibility of either linear or non-linear extrapolation.

All specimens were instrumented with strip gziuges and single element gauges. The
strip gauges contained five individual single element strain gauges at 2mm spacings,
two of which were unused. At each measurement location (e.g. chord crown) a
strip gauge and a single element gauge were placed on a line orthogonal to the weld.
The first gauge of the strip was placed at 0.4 x (T of t) but not less than 4mm. The
single element gauge was placed at the HSE® recommended last gauge position.

Appendix F contains the specification for the strain gauging of specimens.

The T-joint specimens were instrumented at all saddle and crown locations on both
the chord and brace, as shown in Figure 3-1. In addition, the p = 1.0 T-joint
specimens were gauged with two sets of gauges at 30° intervals in two diagonally
opposite quadrants on both the chord and brace. The DT-joint specimens were
instrumented at one saddle and crown location for each brace on both the chord and
brace, as shown in Figure 3-2. In addition, the B = 1.0 DT-joint specimens were
gauged with a set of gauges at 30° intervals in one quadrant on one brace and the
opposite quadrant on the other brace. The strain gauge locations are presented in

Appendix G.
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Note:

Intermediate gauges @
30° & 607 positions on both

braces are for = 1.0 joints.

— Strip gauge, consisting of 5 strain gauges, 3 of which are used

Note:

C14100R020 Rev 1 February 1997

providing additional intermediate gauges.( )

Figure 3-1: Strain gauging of T-joint specimens

Key:
- Single strain gauge
N2 of gauges per specimen
B=10.41 & 0.67 =10
Location , Single . Single
Strip gauges pauges Strip gauges gauges
Brace 4 12 (+4) 8 (+4) 16
Chord 4 4 + 3 {+4) 8
Total 8 16 (+8) 16 (+8) 24

The first § = 1.0 joint tested was gauged with a full compliment of gauges, by
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Tntermediate gauges @
30° & 60° positions on both
braces are for § = 1.0 joints.

Kev:

Ne; of gauges per specimen

Strip gauge, consisting of 5 strain gauges, 3 of which are used
Single strain gauge

p=0.41 & 0.67 =10
Location . Strip gauges :;:gle es Strip gauges :;:g::’s
Braces 4 _ 15 (+6) 8 (+6) 20
Chord 4 4 (+6) 8 (+6) 8
Total 8 - 20 (+12) 16 (+12) 28

Note:

The first p = 1.0 joint tested was gauged around the full compressive side of brace
& gauged around the full tensile side of the other brace for LP.B.

Figure 3-2: Strain gauging of DT-joint specimens

C14100R020 Rev 1 February 1997

Page 34 of 98
=== |
‘%"‘fg S5,
== B I ==




e

As-welded SCF/SNCF ratios have been well documented and it was necessary to
establish the SCF/SNCF ratio for specimens in the grouted condition and whether or
not it differed to that of the as-welded condition. Therefore, in addition to the
single element strain gauges, Specimen T7 was instrumented with 2mm rosette
gauges to enable the determination of SCF/SNCF ratios in the grouted condition.
Each rosette gauge consisted of three single element gauges set at 0°, 45° and 90°
directions. The rosette gauges were placed on a line orthogonal to the weld at one

~ crown and one saddle location on both the chord and brace. Section 6.2 presents the

results of the SCF/SNCF ratio measurements. The SCF/SNCF ratios measured for

specimen T7 in the grouted condition were similar to the as-welded condition.

Strain gauges were also used at two cross section locations aWay from the weld to
measure the nominal axial and/or bending strain and to verify the loads measured by

the dynamometers, see Figure 3-3.

<
PELY BEZN
32d 3.2d
- lf————
5d 5d -
AP

Figure 3-3: Location of the strain gauges for nominal strains on brace
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3.2  Electrical Transducers

Electrical displacement transducers were used to measure (1) the local deformation
of the joint under axial load or bending moment, see Figures 3-4 and 3-5, and (2)
the deflection of the braces under bending, to determine overall deformation of the
test specimen by measurement at two points along each brace, see Figures 3-6 and

3-7. Appendix H contains the transducer measurements,

For axial load and out-of-plane bending load, the local joint deformation was
determined for the DT-joints by the measurement of distances between two points,
each positioned 100mm along each brace from the saddle position. Measurement
data on either Side of the joints were averaged for the axial conditions; the
difference between the data were used to calculate rotation for the out-of-plane
bending case, see Figure 3-4. The T-joint specimens were similar with the
exception that one brace point was replaced by an attachment to the chord on the
opposite side of the joint to the brace, see Figure 3-5. The transducer mounting
locations were chosen to minimise the effect any local deformation of tubular walls
may have on the measurement of joint deformation. For in-plane bending load, the
local joint deformation was determined in a similar manner to that discussed above.
The transducer mounting points were located 130mm along the brace from the
crown positions. Again, the locations were chosen to minimise the effecis of local

tubular wall deformations.
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(* Back also)
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Figure 3-4: Measurement of T—joiht lIocal deformations.
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Figure 3-5: Measurement of DT-joint local deformations
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OPB A

-t Position A Positidnﬁ

OPB A Tﬁ’BB |
IPB A IPB B

Position A Position B

- Positton B' ‘Position
‘Brace 2

Brace 1

Figure 3-7: Measurement of DT-joint global bending deformation

C14100R020 Rev 1 February 1997 | . Page 38 of 98




ek

4.1

4.2

TEST RIG AND TESTING PROCEDURE
General

Before the test specimens were placed into the test rig, their actual geometries were
measured, strain gauges were attached, and preparations for attachment of
displacement transducers were made. Appendix I contains the loading conditions
considered and the overall dimensions of the specimens. The test rig configuration
for the T-joints and DT-joints was essentially the same, with a modification of

columns and beams to accommodate the two joint types.

Test Rig and Loading System for T-joints

The test rig configuration for T-joints is presented in Figure 4-1. The chord ends
are connected to the test rig by hinges for all loading conditions. The axial load in
the braces was applied by a hydraulic jack at the brace end. In the axial tension
loading condition, the axial load was applied to the test specimen by means of four
or six bars, equally loaded and distributed around the brace end. During axial
loading of the DT-joint, the compression load was recorded by a 500 kN or a
4000 kN dynamometer, depending on specimen size and required load level. The
axial tension loading was recorded by strain gauges on the loading bars. The
maximum capacity of the six bars was 2000 kN. The nominal strain gauges on the

braces were used to verify the applied load.

For the in-plane bending loading condition, the moment was applied by pulling the
brace ends with bars attached to jacks. The load was measured with a
dynamometer. The maximum bending moment applied to the joint was taken as the
load at the brace end times the distance to the intersection of the centrelines of
chord and braces. The load was measured by a 200 kN or 800 kN dynamometer.
The strain gauges on the braces were used to verify the applied bending moment.
Similarly, the out-of-plane bending moment was applied by a tensile bar at the end

of the braces. The chord was restricted from torsion by mounting plates attached to
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the chord ends. The applied loads were again measured at each end by a 200 kN or

800 kN dynamometer. The strain gauges on the braces were again used to verify

the applied bending moment.

Figure 4-1: Test rig for T-joints
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4.3

Test Rig and .oading System for DT-joints

The test rig for DT-joints is presented in Figure 4-2. The axial load in the braces
was applied by a hydraulic jack at one brace end. The other brace end was axially
restrained. For the axial compression loading, a spherical bearing was used to
assure the required end conditions. For the axial tension loading condition, the
tensile loading was applied to one brace end by means .of four or six bars, which
were equally loaded. The chord ends were restrained against out-of-plane movement
by the attachment of mounting plates on the chord ends to the test frame. During
axial loading of the DT-joint, the compression load was recorded by a 500 kN or
4000 kN dynamometer. The dynamometer used depended on specifnen size and

therefore the required load level. The axial tension loading was recorded by four or

six bars instrumented with strain gauges. The strain gauges on the braces were used -

to verify the applied load.

For the in-plane-bending load, one chord end was pushed with a hydraulic jack
while the brace ends were restrained against movement in the direction of the chord
axis. Movement of the brace end in the axial direction of the brace and rotation of
the brace end were, however, allowed. The chord was supported in the lateral
direction. The load was measured with a dynamometer aligned with the chord axis.
The maximum bending moment in the brace was taken as the load in the
dynamometer times the distance from the chord centreline to the restrained end of
the braces. The load was measured by a 500 kN or 2000 kN dynamometer. The

strain gauges on the braces were used to verify the applied bending moment.

The out-of-plane bending moment was applied by a tensile bar at the end of the

‘braces. The load was applied at each brace end using jacks. The jack loads were

kept the same by use of a system which monitors the loads applied and adjusts as
necessary. The applied load was measured at each end by a 200 kN or 800 kN
dynamometer. The strain gauges on the braces were used to verify the applied

bending moment,.
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Figure 4-2: Test rig for DT-joints
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Data Recording

4.4
During testing, discrete measurements were taken of;
. relative displacement between chord and brace from which local joint
flexibility could be obtained;
. displacement at two points along brace from which rotation could be
calculated;
. strains:
- for the axial compression load case: (load cell and strain gauges on
brace);
- for the axial tension load case: (tensile bar strain gauges and strain
_ gaugeson brace);
- for the in-plane bending moment case: (load cell for applied load
and strain gauges on brace);
- for the out-of-plane bending moment case: (load cell of applied load
and strain gauges on brace);
The measurement of displacements, strains and loads were performed by means of
HP dataloggers and a micro-computer.
4.5  Testing Sequence
The DT-joint test specimens were first tested in the as-welded condition in the
following sequence: DT4, DT8, DT5, DT2, DT9, DT6 and DT3. After the testing
of the DT-joints, the test rig was modified to accommodate the T-joints which were
then tested in the as-welded condition in the following order: T9, T3, TS, T7 and
T1. After grouting of the specimen chords, the specimens were tested in the
following order T7, T1, T5, T9, T3, DT4, DTS, DTS5, DT8, DT9, DT6 and DT3.
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The following loading sequence was used to generate strain gauge data for the as-

welded (ungrouted) specimens:

1. Application of ten cycles of in-plane bending load on the brace at 15-20% of
the (ISO) predicted ultimate load of the ungrouted joint subjected to in-plane

bending.

2. Application of in-plane bending load to the brace in three equal increments,
up to the applied load in step 1. After each load increment, strain gauge
measurements, displacements and applied load were taken. Subsequently,
the load was reduced in three equal stages back to zero, taking measurements

at each load level.

3. Repetition of steps 1 and 2 for out-of-plane bending, axial compression and

axial tension.

Prior to testing of the specimens in the grouted condition, an investigation on the
effects of preload on local strain measurement was carried out in order to establish
an appropriate level of maximum preload to apply to the grouted joint specimens.

This investigation is discussed in Section 7.

With the exception of specimen T7, which was utilised for the conduct of the above
mentioned preload investigations, the loading sequence for the grouted specimens

was as follows:

1. Application of ten cycles of in-plane bending load on the brace at 15-20% of
the (ISO) predicted ultimate load of the ungrouted joint subjected to in-plane
bending.

2. Application of in-plane bending load to the brace in three equal increments,
up to the applied load in step 1. After each load increment, measurements
of strain, displacement and applied load were taken. The load was then

reduced in three equal stages, taking measurements at each load level.
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3. Repetition of steps 1 and 2 for out-of-plane bending, axial compression and
axial tension.
4, Application of an axial compression and tension load of 65% of ungrouted

ultimate load.

5. Repetition of steps 1,2 and 3.

6. Application at an axial compression and tension load of 130% of ungrouted

ultimate load.
7. Repetition of steps 1,2 and 3.

8. Conduct ultimate bending capacity test (ipb or opb).
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5.1

5.2

DETERMINATION OF STRAIN CONCENTRATION FACTORS
Nominal Strains

The nominal strain is defined as the maximum elastic strain on the OD of the
tubular assuming that the brace behaves as a beam (M/Z) or axial (P/A) member.
For the bending load cases, the moment was determined as the load applied at the

brace end times the distance to the intersection of the chord and the brace.

Hot Spot Strain and SNCF

The procedure for the determination of the hot spot strain was an extrapolation of
strains from a defihed region adjacent to the weld, defined as the extrapolation
region, see Figure 5-1. The extrapolation region was defined by a specified
minimum and maximum distance from the weld toe of the joint, in such a way that
the effects of the global geometry of the weld (flat, concave, convex} and the

condition at the weld toe (angle, undercut) were not included in the hot spot strain.

L e

o
- *

‘ r,min,|

s

N

1 2

)

\

T —lTl —6L ‘

> . — asd
Strip Gauge Single Element
(Consisting of 5 single elements) Gauge

{(# Denotes single element)

| Figure 5-1: Extrapolation region
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The adopted extrapolation region is defined by the following minimum distance
(I, min) @and maximum distance (I n,,) from the weld toe as a function of the chord

and brace dimensions,

Chord Side

. I; min = 0.4T but not less than 4mm for crown and saddle

. 1 max = 0.4 (tRT)™* for crown

. L.max = R 5/180 - | lfor saddle

Brace Side

. L. min = 0.4t, but not less than 4mm for crown and saddle
- L max = 0.65 (rt)"s : for crown and saddle

The hot spot strain was determined by parabolic curve fitted through data points and
parabolic extrapolation to the weld toe. The extrapolation was based on the strain

component perpendicular to the weld.

The SNCF value was calculated by the ratio of the hot spot strain divided by the

nominal strain.
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0.65(r t)!?2

Chorci

a = 0.4t but not less than 4mm
b = 0.4T but not less than 4mm

| Ja
b

0.65(r t)V2

Figure 5-2: Minimum and maximum distance from the weld toe
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6.1

6.2

6.2.1

OVERVIEW OF GROUTED TUBULAR JOINT BEHAVIOUR
General

The following sections present a technical appraisal of the behaviour of grouted
tubular “T" and ‘DT’ joints. Section 6.2 discusses in general terms the reduction in

SCFs (Stress Concentration Factors) for the various load cases.

Stress Concentration Factors (SCFs) are to some extent dependent on the previous
loading history for grouted tubular joints. Under tensile loading or on the tension
side of in-plane or out-of-plane bending, some level of local separation and yielding
occurs giving rise to the notion of SCF dependency on preload. This aspect is

discussed further in Section 6.3.
Load Case Effects

The presence of grout significantly stiffens the chord member in the beam bending
sense, restricts ovalisation of the chord and restricts chord wall deformations. The
presence of grout has the effect of providing a more even distribution of stresses
around the joint intersection. For the majority of specimens tested this resulted in

an increase of SCF for the grouted condition at the crown location.

The effect of grout on SCFs for the various load cases are discussed in more detail

below.

Axial Loading

Reduced grouted SCFs, compared to as-welded SCFs, exist at the saddle location.
Resistance to axial loading at this location is predominantly by chord wall bending
for small B ratio joints, and membrane action for high B ratio joints. The presence
of grout restricts chord wall deformations and ovality and therefore results in a

reduction in SCFs. Behaviour is similar for the chord side and brace side.

An increase in SCFs, over as-welded SCFs, particularly for compressive loading is

present at the crown location due to the increased stiffness afforded by the grout,
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6.2.2

6.2.3

6.3

which attracts additional load. Behaviour is similar for the chord side and brace

side.

In-plane Bending

The reduction in SCFs for in-plane bending loads is low on the chord side, given
the greater relative stiffness at crown locations viz a viz saddle locations. The
presence of grout causes the neutral axis to shift towards the compressive side of the
crown. Therefore, the reduction in SCFs differs between the tension side and the

compressive side of the brace as indicated in the test results.

Out-of-FPlane Bending

The reduction in SCFs is similar to that for in-plane bending loading. Again, the

reduction in SCFs differ between the tension side and compressive side of the brace.

Preload Effects

Preload is defined here as the load history a particular joint has been subjected to.
Preload and its magnitude and load sign have been seen to affect SCFs for a grouted

joint.

Preload investigations carried out by Veritec™ indicated that a threshold SCF value
existed for double skin grouted joints. The SCF threshold value is defined as being
the highest SCF measured for any preload. The SCF threshold value was obtained
by steadily increasing tensile preload prior to SCF measurements at lower loads,
until a drop in the measured SCF was observed. It was observed that substantial
yielding occurred at the hot spot location for that preload which gave the SCF
threshold value.

It was found that measured SCFs in specimens which had received reversed pre-
loads, i.e. tension and compression, were larger than in those which had

experienced uni-directional preload.
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The Veritec work also measured residual strains as the specimens went through the
first SCF measurement cycle. These residual strains increased as the preload levels
increased. Subsequent shake-down procedures were adopted. A number of cycles,
at a Joad corresponding to a maximum stress less than the yield stress at the hot spot

location, were applied until the measured residual strain was less than 1%.

For the joint types tested in this test programme, the behaviour for the fully grouted test
specimens has shown that the grouted SCF remains constant at increasing preload levels,
for tension loading. This is the case for the tension side of bending load cases and at all
gauge positions for the axial tension case. Conversely, the grouted SCF begins to
increase above 60% preload (as-welded ultimate tensile capacity) on the compressive
side for the bending load cases and for the majority of gauge positions fof the axial
compression case. In this instance, the SCF increases to a greater extent at the chord

saddle location. Section 7 presents the results in more detail.
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7.1

TEST RESULTS

Preload Investigation Results on Specimen T7

Specimen T7 was subjected to preload under compression/tension levels from 20%

to 130% of ISO predicted as-welded joint capacity in steps of 10% to 20%. Figure
7.1 summarises the SNCF measurement and preloading sequence. Appendix J

contains a detailed description of the test sequence for the preload investigation.

SCNFs were determined for T7 at several preload levels. Figures 7-2 to 7-5 present
a summary of the results contained in Appendix K, which contains further details of

the SNCF measurements taken.

Figure 7-2 presents the in-plane‘ bending SNCFs for brace and chord crown
positions as a function of the axial preload level expressed as a percentage of the
mean ultimate strength of the joint as given by ISO code. After 60 % preload, the
SNCFs at the compression loaded side of the chord crown position increase
marginally. In general the SNCFs remain constant at all SNCF measurement

locations.

Figure 7-3 presents the out-of-plane bending SNCFs for brace and chord saddle as a
function of the axial preload level. After 60 % preload, the SNCFs at the
compression side of the chord saddle positions increase. At all other measurement

focations the SNCFs remain constant.

Figure 7-4 presents the average SNCFs for axial compression loading and are
shown for the saddle and crown positions on the brace and chord. After 60 %
preload, a significant increase in the SNCFs is indicated for the saddle positions on
the chord side. Increases in SNCFs are also found at the chord crown and brace

saddle positions. The SNCF at the brace crown location remains constant.

Figure 7-5 presents the average SNCFs for axial tension loading and are shown for
the saddle and crown positions on the brace and chord. The SNCFs remain constant

for all preload levels.
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Figure 7-1: SNCF measurement and préload sequence for specimen T7
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7.2

The results presented for the preload investigations on Specimen T7, indicate the
SNCFs remain constant, for all loading conditions, at preload levels between 15%
and 60% of the as-welded predicted mean ultimate joint tensile strength as given by
the ISO code. The results also indicate that the SNCFs for the tension side of
bending cases and the axial compression case, even at the high preload levels, do
not increase beyond the SNCF measured at 60% preload. The SNCFs remain
constant, to a large extent, for the axial tension case. The SNCFs increase beyond
preload levels of 60% for the axial compression case, and only marginally exceed
the SNCFs measured for the axial tension case at 130% preload. Below the 130%
preload level, the SNCFs measured for the axial tension case are higher than those

measured for the axial compression case.

Based on the results obtained from the preload investigation on Specimen T7, the
remaining specimens were preloaded in increments up to a maximum level of

130%. SNCF measurements were taken, after each preload increment.

SCF/SNCF ratio

With additional strain gauge rosettes mounted on Specimen T7, at one crown and
one saddle position on the chord and brace, the actual stresses were determined.
Using single strain gauges only a strain concentration can be determined at the hot
spot location. FHowever, using rosette gauges, the stress concentration can be
determined at the hot spot location. Appendix K contains summary tables of
SCF/SNCF ratios for Specimen T7. The SCF/SNCF ratios for the preload levels
applied are presented in Figure 7-6, 7-7 and 7-8 for each of the loading conditions.
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7.3

From the results in Figure 7-6, it would appear that the SCF/SNCF ratio should
remain constant at all measurement locations through the range of applied preload
levels for axial tension and axial compression loading conditions. Figure 7-7 and
Figure 7-8 also demonstrate this to a degree. It is therefore concluded that the
variations seen in Figure 7-7 and Figure 7-8 can be attributed to malfunctioning

gauges and/or mis-readings.

Figure 7-6 demonstrates stability in the SCF/SNCF ratio for both the tension side
and compression side of bending load through the full range of applied preload
levels. The visible peak experienced by the brace saddle location gauges, for out-

of-plane bending, can be attributable to a mis-read gauge.

The results indicate that the grouted SCF/SNCF ratios range between 1.10 and 1.37
at the 50% preload level for all loading modes. The average grouted SCF/SNCF

ratio was approximately 1.2 which was subsequently used for the conversion of

grouted SNCFs to grouted SCFs for all specimens. The 1.2 ratio was also utilised

as the factor for converting the as-welded SNCFs to as-welded SCFs.

As-welded SNCF Results and Measurements

As-welded SNCF measurements were taken for all specimens for in-plane bending,
out-of-plane bending, axial compression and axial tension load cases, in tumn.
SNCFs were measured in the above noted sequence, sincé in-plane bending
typically results in the lowest SNCFs and axial tension typically gives rise to the
highest SNCFs, i.e. the sequence was chosen so that load cases would have minimal
effect on the next load case SNCF measurement. Prior to each SNCF measurement
load case, a minimum of ten cycles of that load were applied to ‘shake’ out any
residual strains. SNCF measurements were taken in three equal increments up to
approximately 20% of the ISO predicted as-welded ultimate joint capacity for that
load case. SNCF measurements were also taken in three equal increments as the
load was reduced back to zero. The SNCF measurements were repeated for each

load case considered.
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SNCFs are presented for the tension side and compression side of the bending load
cases to enable comparison to the corresponding grouted SNCFs contained in

Section 7.4.

Appendix L contains the full set of SNCF measurements taken for each of the test

specimens.

7.3.1 T-Joints

A summary of the SNCF results for the T-joints are presented in Table 7-1 for in-
plane bending loading, Table 7-2 for out-of-plane bending loading, Table 7-3 for

axial compression loading and Table 7-4 for axial tension loading.

Specimen T9 was investigated twice. It was placed in the test rig and loaded in all
four loading modes twice in order to determine any possible influence of
assembly/disassembly of the test specimen into the test rig on the load and strain
measurements. The second inve-stigation is marked by ‘(s) second’. The full results
of this exercise are presented in Appendix L. However, little influence of

assembly/disassembly was found as can be inferred from an inspection of Table 7-1

to 7-4.
Brace Crown Chord Crown
Specimen B Y Tension | Compression | Tension | Compression

Side Side Side Side

T1 041 |12.4 1.37 1.32 2.42 2.45

T3 1.0 [12.4 1.16 1.14 3.09 2.51

TS 0.67 | 20.0 1.59 1.43 3.96 3.23

17 0.41 }25.9 1.66 1.67 5.00 4.50

T9 1.0 }25.9 1.37 1.45 2.89 2.51
TO(s) 1.0 [25.9 1.36 1.45 2.87 2.51

Table 7-1:  Summary of SNCF results for in-plane bending

C14100R020 Rev 1 February 1997 Page 60 of 98

Fﬁlmnm

\



.,

Brace Saddle Chord Saddle
Specimen B Y Tension | Compression | Tension | Compression
Side Side Side Side
T1 041 | 124 2.97 3.18 6.14 6.0
T3 1.0 | 12.4 4.97 4.64 6.66 7.35
T5 0.67 | 20.0 7.71 7.78 13.84 14.35
T7 0.41 | 25.9 6.24 7.07 18.43 17.01
T9 1.0 [ 25.9 6.57 7.53 15.44 16.99
TO(s) 1.0 { 25.9 6.43 7.45 15.12 16.76
Table 7-2:  Summary of SNCF results for out-of-plane bending
Averaged Values .
Specimen B ¥ Brace Brace Chord Chord Saddle
Crown Saddle Crown
Tl 0.41 | 124 0.25 5.39 5.79 8.36
T3 1.0 [12.4 2.07 4.29 8.56 2.95
TS5 0.67 120.0 1.10 10.97 8.58 17.79
T7 0.41 1259 1.37 10.46 8.50 27.76
TS 1.0 |[25.9 2.18 7.11 7.73 12.13
TO(s) 1.0 {259 2.21 7.00 7.84 11.93
Table 7-3:  Summary of SNCF results for axial compression loading
Averaged Values
Specimen B ¥ Brace Brace Chord | Chord Saddle
. Crown Saddle Crown _
T1 0.41 | 12.4 0.24 4.96 5.35 3.69
T3 1.0 |12.4 2.08 4.34 8.51 2.72
T5 0.67 {20.0 1.01 10.83 8.02 17.63
T7 0.41 | 25.9 0.71 10.37 7.9% 25.91
T9 1.0 ]125.9 2,15 6.88 7.49 11.62
TI(s) 1.0 {25.9 2.21 6.77 7.72 11.41
Table 7-4:  Summary of SNCF results for axial tension loading
7.3.2 DT-Joints
Summaries of the SNCF results for the DT-joints are presented in Table 7-5 for in-
plane bending loading, Table 7-6 for out-of-plane bending loading, Table 7-7 for
axial compression loading and Table 7-8 for axial tension loading.
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Appendix L contains the full set of SNCF measurements taken for each of the test

specimens.
Brace Crown Chord Crown
Specimen B Y Tension | Compression | Tension | Compression
Side Side Side Side
DT2 0.67 | 12.4 1.45 1.54 3.12 3.43
DT3 1.0 | 124 1.33 1.03 2.59 2.19
DT4 0.41 | 20.0 2.36 2.56 4.08 4.38
DTS 0.67 | 20.0 1.45 1.78 5.88 4.09
DT6 1.0 | 20.0 1.46 1.23 2.51 2.62
DT8 0.67 | 25.9 1.57 1.57 4.03 3.84
DT9 1.0 | 25.9 1 1.47 1.26 2.79 2.96
Table 7-5:  Summary of SNCF results for in-plane bending
Brace Saddle Chord Saddle
Specimen B Y Tension | Compression | Tension | Compression
Side Side Side Side
DT2 0.67 | 12.4 4.76 4.22 5.71 7.65
DT3 1.0 | 124 2.28 1.95 2.4% 2.65
DT4 0.41 | 20.0 3.47 4.06 0.65 8.91
DTS5 0.67 | 20.0 7.64 7.47 18.16 12.08
DTé6 1.0 { 20.0 2.58 2.25 5.62 3.04
DT8 0.67 | 25.9 8.39 9.14 18.85 17.32
DT9 1.0 | 25.9 2.26 2.27 4.50 7.06
Table 7-6:  Summary of SNCF results for out-of-plane bending
Averaged Values
Specimen B ¥ Brace Brace Chord Chord
Crown Saddle Crown Saddie
DT2 0.67 | 12.4 0.05 5.13 1.73 13.11
DT3 1.0 | 12.4 0.72 3.59 0.65 3.39
DT4 0.41 | 20.0 0.71 11.06 3.65 26.27
DTS 0.67 | 20.0 0.07 15.84 3.43 29.93
DT6 1.0 | 20.0 0.93 4.37 0.51 7.11
DT8 0.67 | 25.9 0.42 17.94 1.42 36.60
DT9 1.0 | 25.9 1.04 3.71 0.60 8.47
Table 7-7: Summary of SNCF results for axial compression loading
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7.4

7.4.1

Averaged Values
Specimen B ¥ Brace Brace Chord Chord
Crown Saddle Crown Saddle
DT2 0.67 | 12.4 0.07 9.26 1.76 13.27
DT3 1.0 | 12.4 0.72 3.53 0.66 3.38
DT4 0.41 | 20.0 0.00 11.25 3.70 26.14
DTS 0.67 | 20.0 0.05 15.50 ] 3.78 29.77
DT6 1.0 { 20.0 0.98 4,17 0.52 6.62
DT8 0.67 | 25.9 | 0.43 18.08 1.32 36.99
DT9 1.0 | 25.9 1.05 3.54 0.62 8.32

Table 7-8:  Summary of SNCF results for axial tension loading

Grouted SNCF Results and Measurements

SNCF measurements were taken for in-plane bending, out-of-plane bending, axial
compression and axial tension load cases, in turn. Based on the findings from the
preload investigation. on Specimen T7, in general 0%, 60% and 130% preload
levels were applied to the remaining specimens. As with the as-welded SNCF
measurements, the grouted SNCF measurements were taken in three equal load
increments corresponding to those used in the as-welded condition for each of the
specimens. The SNCFs were measured for each of the load cases. The SNCFs
were calculated from an average of two values. One value relates to the SNCF
obtained during the loading path (between zero load and peak load), and the other to
the unloading path (between peak and zero load).

The following sections summarise the measured SNCFs at the crown and saddle
positions for each specimen for the load cases considered. Appendix M contains the
data generated during testing from which the data in the following sections have

been extracted.

A summary of the SNCF results for the grouted T-joint specimens are presented in
the following tables. Each table contains the results of the SNCF at the brace
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crown, brace saddle, chord crown and chord saddle positions for each of the preload

levels.

The two values given in the tables for in-plane bending and out-of-plane bending
represent tension side SNCF and compression side SNCF in that order. The format
for the tables presenting results for specimen T7 differ to those of the other
specimens due to the number of preload levels tested. For specimen T7, separate

tables have been generated for each of the loading conditions.

Preload | Loadcase Brace Chord
Saddie Crown Saddle Crown
0% IPB 1.35/1.49 2.22/2.02
QOPB 2.38/2.81 4.5/3.5
COMPRESSION 2.07 1.42 3.47 4.65
TENSION 3.71 0.94 4.98 4.84
45% IPB 1.38/1.33 2.43/2.29
) OFB 2.46/3.0 4.68/4.07
COMPRESSION 3.35 1.02 5.72 5.80
TENSION 3.07 0.93 4.70 4.89
90% IPB 1.39/1.32 2,22/2.34
OFB 2.34/2.90 4.32/4.04
COMPRESSION 3.12 1.00 4.74 5.34
TENSION 2.45 1.12 3.55 4,77
130% IPB 1.40/1.31 2.26/2.34
OPB 2.33/2.84 4.46/4.15
COMPRESSION 2.92 0.96 4.50 5.21
TENSION 2.42 1.02 3.65 4.87
Table 7-9: Summary of grouted SNCFs for specimen T1, y = 124,

B = 0.41, after four levels of compression and tension preload
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Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 1.29/1.53 2.78/2.0
OPB 1.32/2.11 2.31/2.19
COMPRESSION 1.72 2.77 0.42 §.13
TENSION 1.75 2.33 0.52 9.05
50% IPB 1.27/1.27 2.84/2.32
OPB 1.28/1.86 1.82/1.94
COMPRESSION 1.30 2.41 0.28 8.90
TENSION 1.33 2.24 0.67 9.45
Table 7-10: Summary of grouted SNCFs for specimen T3, vy = 12.4, B = 1.0,
after two levels of compression and tension preload
Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 1.74/2.18 3.59/2.76
OPB 2.88/3.97 3.38/6.58
COMPRESSION 2.76 2.41 4.47 7.00
TENSION 3.66 1.49 5.31 6.35
50% IPB 1.74/2 .02 3.62/2.90
OPB 2.96/4.06 3.64/6.66
COMPRESSION 3.75 2.28 5.94 843
TENSION 3.63 1.69 5.08 . 1.61
100% IPB 1.84/1.75 3.46/3.27
OPB 3.83/3.95 5.13/6.40
COMPRESSION 4,33 2.13 5.91 8.77
TENSION 2.73 1.86 3.73 7.42

Table 7-11:

Summary of grouted SNCFs for specimen TS5, v

= 20.0,

B = 0.67, after three levels of compression and tension preload
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Brace Crown Chord Crown
Preload Level % Tension Compression Tension Compression

Side Side Side Side

7 1.50 2.45 4.16 3.26
13 1.49 2.51 4.17 2.84
20 1.48 2.62 4.07 2.45
26 1.47 2.57 4.05 2.43
40 ' 1.48 2.62 4.14 2.40
52 1.50 2.60 4.20 2.51
65 1.41 2.63 4.00 2.57
78 1.52 2.50 4.22 3.18
90 1.51 2.41 4.28 3.47
105 1.57 2.29 4.36 4.35
130 1.56 1.98 4.31 4.65

Table 7-12:

Summary of grouted SNCFs for specimen T7 for in-plane

bending, v = 25.9, B = 0.41, measured during preload

investigations

Brace Saddle Chord Saddle
Preload Level % Tension Compression Tension Compression

Side Side Side Side

7 4.20 6.15 11.71 7.85
13 4.00 5.84 11.16 5.96
20 4.10 5.92 11.42 5.81
26 4.11 5.91 11.59 6.20
40 3.65 5.98 10.95 5.22
52 3.78 5.63 10.48 4.01
65 4.01 5.79 11.21 5.82
78 4.35 6.35 12.30 9.03
90 4.43 6.52 12.49 9.69
105 4.41 6.41 12.41 11.14
130 4.66 6.19 13.07 12.68

Table 7-13: Summary of grouted SNCFs for specimen T7 for out-of-plane
bending, v = 25.9, B = 0.41, measured during preload

investigations
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Preload Level % Brace Chord Brace Chord
Crown Crown Saddle Saddle

7 2.87 6.07 4,31 1.051

13 1.96 4.82 3.22 6.87

20 1.57 4.76 2.69 5.72

26 1.37 4.83 2.60 5.89

40 1.65 4,73 2,73 5.77

52 1.48 5.00 - 2.73 5.80

65 1.32 4.94 2.77 5.70

78 1.36 5.93 3.67 7.64

pal) 1.41 6.61 4.38 8.66

105 1.43 5.82 4.20 6.81

130 1.66 7.39 5.49 11.60

Table 7-14: Summary of grouted SNCFs for specimen T7 for axial
compression, v = 25.9, B = 0.41, measured during preload
investigations

Preload Level % Brace Chord Brace Chord
Crown Crown Saddle Saddle

7 1.20 6.54 5.10 11.99

13 1.54 5.87 4,88 11.69

20 1.17 5.71 4.59 11.07

26 1.17 5.81 4.63 11.02

40 1.19 5.83 4,84 11.57

52 1.14 5.82 4.88 11.65

65 1.09 5.64 4.94 12.08

78 1.19 6.34 4.33 10.38

90 1.21 - 6.36 4.51 10.89

105 1.23 6.47 4,27 10.16

130 1.19 6.20 4.02 9.85

Table 7-15: Summary of grouted SNCFs for specimen T7 for axial tension,
v = 25.9, B = 0.41, measured during preload investigations
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7.4.2

Preload Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 1.43/2.06 2.63/2.31
OPB 1.59/3.21 4.19/4.82
COMPRESSION 2.51 2.54 6.63 3.05
TENSION 1.98 1.85 6.77 2.64
50% IPB 1.42/2.06 2.65/2.43
OBP 1.56/2.06 4.28/4.59
COMPRESSION 2.70 2.53 2.72 8.00
TENSION 2.03 1.99 2.79 7.34
100% | IPB 1.45/1.92 2.63/2.15
OPB 0.77/1.52 1.99/3.58
COMPRESSION 2.62 1.66 7.74 1.86
TENSION 2.19 1.62 7.86 2.03

Table 7-16: Summary of grouted SNCFs for specimen T9, y = 25.9, B = 1.0,

DT-Joints

after three levels of compression and tension preload

A summary of the SNCF results of the grouted DT-joint specimens are presented in

the following tables.

Each table contains the results of the SNCF at the brace

crown, brace saddle, chord crown and chord saddle position for the different

preload levels.

The two values given in the tables for in-plane bending and out-of-plane bending

represent tension side SNCF and compression side SNCF in that order.
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Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPR 2.43/1.59 2.18/2.76
OPB 2.96/3.57 4.30/4.25
COMPRESSION 2.93 1.54 4,70 2.47
TENSION 3.74 0.79 5.11 1.77
50% IPB 2.53/1.63 2.38/2.89
OPB 3.07/3.65 4.50/4.36
COMPRESSION 3.12 1.67 5.07 2.72
TENSION 3.76 0.73 5.17 1.68
100% IPB 2.38/1.64 2.56/2.88
OPB 3.33/3.60 5.1014.26
COMPRESSION 4.18 1.43 - 6.41 311
TENSION 3.40 0.78 4.60 1.59
Table 7-17: Summary of grouted SNCFs for specimen DT2, y = 12.4,
B = 0.67, after three levels of compression and tension preload
Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 2.51/1.19 1.52/1.75
OFPB 1.79/2.06 2.60/2.39
COMPRESSION 3.36 0.79 3.27 1.03
TENSION 2.11 0.84 3.09 0.93
50% IPB 2.62/1.21 1.44/1.77
OFB 1.89/2.18 2.61/2.41
COMPRESSION 3.24 0.89 3.22 1.21
TENSION 2.78 0.80 3.45 0.85
1060% IPB 2.71/1.24 1.53/1.77
OPB 1.97/2.22 2.76/2.48
COMPRESSION 3.30 1.21 3.33 1.20
TENSION 3.11 0.81 3.53 0.86
Table 7-18: Summary of grouted SNCFs for specimen DT3, y = 12.4,

B = 1.0, after three levels of compression and tension preload
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Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 3.58/2.24 1.62/3.19
OPB 3.57/2.68 3.89/6.39
COMPRESSION 1.69 2.05 3.51 2.37
TENSION | 3.32 1.11 6.91 2.19
50% | IPB 3.702.27 1.67/3.24
OPB 3.89/2.82 4.23/6.70
COMPRESSION 1.76 1.99 3.26 2.60
TENSION 3.44 1.03 6.94 2.10
100% IPB 3.69/2.23 1.60/3.18
OPB 3.92/2.85 4.26/6.70
COMPRESSION 1.77 1.89 3.60 2.85
TENSION 4.11 1.29 8.35 2.59
Table 7-19: Summary of grouted SNCFs for specimen DT4, v = 20.0,
B = 0.41, after three levels of compression and tension preload
Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 2.77/1.82 2.30/3.19
QOPB 3.47/4.31 3.68/9.91
COMPRESSION 3.55 1.76 7.01 2.74
TENSION 4.61 0.87 8.38 1.14
50% 1PB 2.77/1.82 2.28/3.22
OPB 4.20/4.92 4.94/11.49
COMPRESSION 3.61 1.93 7.47 1.65
TENSION 5.30 0.80 9.66 0.62
100% iPB 2.84/1.85 2.45/3.26
OPB 4.54/4.93 4.88/11.37
COMPRESSION 4,08 1.98 7.44 2.97
TENSION 5.42 0.74 9.82 0.42
Table 7-20: Summary of grouted SNCFs for specimen DTS, y = 20.0,

B = 0.67, after three levels of compression and tension preload
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Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 3.05/1.44 1.30/2.32
OPB 2.55/2.09 3.44/4.77
COMPRESSION- 3.74 1.41 5.91 1.57
TENSION 2.59 1,08 4.75 1.21
50% | IPB 3.31/1.43 0.95/2.27
OFPB 2.60/2.28 3.53/4.86
COMPRESSION 4.00 1.32 6.34 1.49
TENSION 3.29 1.07 5.38 1.09
100% IPB 3.10/1.42 1.29/2.27
OPB 2.52/2.33 3.45/5.10
COMPRESSION 3.98 1.49 6.41 1.45
TENSION 3.19 1.06 5.24 1.07 ,
Table 7-21: Summary of grouted SNCFs for specimen DT6, vy =20.0,
B = 1.0, after three levels of compression and tension preload
Preload | Loadcase Brace Chord
' Saddle Crown Saddle Crown
0% IPB 2.96/1.53 1.07/2.74
OPB 3.71/4.34 4.11/9.41
COMPRESSION 2.44 1.99 4.67 1.54
TENSION 4.04 0.59 6.90 1.80
50% IPB 3.07/1.53 1.15/2.77
OPB 3.95/4.55 5.23/9.71
COMPRESSION 3.23 1.61 7.27 2.38
TENSION 5.36 0.60 10.50 1.93
100% IPB 3.10/1.51 1,21/2.73
OPB 4.15/4.80 5.82/10.29
COMPRESSION 2.62 1.60 4.19 1.19
TENSION 5.75 0.60 11,05 2.00
Table 7-22: Sumunary of grouted SNCFs for specimen DTS, y = 25.9,

p = 0.67, after three levels of compression and tension preload
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7.4.3

C14100R020 Rev 1 February 1997

Preload | Loadcase Brace Chord
Saddle Crown Saddle Crown
0% IPB 2.77/1.51 0.51/2.51
OPB 2.33/1.47 6.97/3.59
COMPRESSION 3.37 1.56 - 8.05 2.06
TENSION 1.64 1.03 5.57 1.15
50% IPB 2.78/1.51 0.52/2.52
OPB 2.27/1.55 6.88/3.82
COMPRESSION 3.50 1.82 8.46 2.12
TENSION 1.65 1.03 5.70 1.12
100% IPB 2.89/1.52 0.69/2.57
OFB ‘ 2.23/1.76 6.73/4.29
COMPRESSION 3.44 1.98 8.19 1,98
TENSION 2.25 1.01 7.62 1.08

Table 7-23: Summary of grouted SNCFs for specimen DT9, y = 25.9,
B = 1.0, after three levels of compression and tension preload

Discussion of Test Rgult-g

A summary of the results are presented by the Figures contained in Appendix M
which compare the grouted SNCFs with the as-welded SNCFs at the crown and
saddle positions for the chord and brace. The results are presented as functions of B
for constant y. The SNCFs presented for the grouted joints were taken following

the 50% preloading level.

Table 7-24 presents a summary of SNCF results for in-plane bending and out-of-
plane bending for specimens in the as-welded condition and grouted condition. In
the as-welded condition the SNCFs are comparable between the tension side and
compression side for the bending load cases, as presented in Table 7-24. However,
in the grouted condition the SNCFs deviate between the tension side and
compression side for the bending load cases. Although deviation between tension
side and compression side SNCFs exists, the average SNCF values were used for

subsequent data reduction.
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This is based on the recognition that a joint in-situ on a platform could well be
subjected to cyclic loading which causes alternating tension and compression loading
at a hot spot location. The hot spot stress range is more accurately calculated using
the average SNCF (SCF) value rather than either the tension side value alone or the

compression side value alone.

Table 7-25 presents the Reduction Factors derived uéing the measured grouted
SNCFs over the measured as-welded SNCFs. In the grouted condition there is a
reduction in SNCF at the saddle location for out-of-plane bending and axial tension,
on the chord side and brace side. There is also a reduction in SNCF at the crown
location for in-plane bending on the chord side. The brace side SNCF however,
increases for in-plane bending. Also, the SNCF at the crown location generally
increases for axial tension and axial compression on both the chord side and brace
side. For some joints the SNCFs for the grouted condition are significantly higher
than SNCFs for the as-welded condition, i.e. the RF is above unity, at brace crown
locations for all pertinent load cases. The largest RF recorded at the brace crown
location is 4.43, despite excluding four factors in excess of 10 due to the near zero
values of the as-welded SNCF. In the grouted condition the SNCFs increased, but
do not represent the critical SNCF for the grouted condition. For the chord side

crown, the absolute highest recorded factor is 3.53.

7.5 Ultimate Strength Test Results and Measurements
The specimens were loaded up to failure in in-plane or out-of-plane bending, see
Table 7-26. The load-rotation plots for the ultimate load tests are presented in
Appendix N. Pictures of the failure modes are presented in Appendix O.
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Joint Maximum Loading type | Failure mode
moment [kNm]
At Chord | At Chord
C.L. Face
T1 152 122 opb shear failure in chord at
saddle
T3 923 839 opb near to failure but limited
by test rig capacity
TS 249 217 opb shear failure in chord
saddle
T7 63 51 opb shear failure in chord
saddle
T9 512 465 opb brace buckling
DT2 425 370 opb shear failure in chord
saddle
DT3 813 739 opb near to failure but limited
by testing capacity
DT4 97 78 ipb brace buckling
DTS 267 232 ipb | brace buckling
DT6 613 557 - ipb brace buckling
DT8 216 188 opb shear failure in chord
saddle
DT9 402 365 ipb brace buckling

Table 7-26: Summary of Ultimate Load Tests

7.6  Local Joint Flexibility

Local joint flexibility was calculated from data obtained with displacement
transducers. These measurements were téken' across the joinf and give bending and
axial rotations and displacements respectively. Appendix H presents the layouts of
transducers utilised in measuring displacements for ‘T’ and ‘DT’ joints.

Flexibilities were measured in the as-welded and grouted conditions for in-plane
bending, out-of-plane bending, axial compression and axial tension. Appendix P
contains local bending and local axial deformation plots for all specimens. Figures
7-9 and 7-10 present typical local bending and local axial deformation plots

respectively.
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For all specimens, the grout significantly increases the rotational stiffness at the

joint for in-plane bending. The relative stiffness increases as v increases. A

S

expected, the grout has little or no effect on the rotational stiffness of the B = 1.0

‘DT’ joints for out-of-plane bending. There is also little or no effect on the axial

stiffness for this joint type for axial tension and compression. The presence of grout

significantly increases the stiffness of the “T” joint specimens for all loading modes. -
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Local Bending Joint Deformation T7
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- Figure 7-9: Typical local bending joint flexibility plot
Loca! Axial Joint Deformation T7
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7 Figure 7-10: Typical local axial joint flexibility plot
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8.1

8.2

ANALYSIS OF TEST RESULTS

General

This section presents comparisons between measured as-welded SCFs and predicted

as-welded SCFs and the findings of studies conducted on the development of

formulations to predict SCF Reduction Factors (RFs), i.e. the ratio of grouted SCF
to as-welded SCF. The as-welded predicted SCFs were derived using Efthymiou®
and Llyods(s) parametric equations. Appendix Q contains the development of
formulations, using the measured as-welded and ‘measured’ grouted SNCs (inferred
from measured SN CFs), to predict the RF for each joint and load type for both the
chord and brace side of the weld. Appendix R contains the development of
formulations using Efthymiou predicted as-welded and measured grouted SNCs, to

predict the RF for each joint and load type.

Appendix S contains Tables S-1 to S-6 which present summaries of measured -as-
welded SCFs, grouted SCFs and Reduction Factors in a matrix format for chord

side and brace side locations.

As-welded Measured SCFs vs Predicted SCFs

Table 8-1 presents a summary of as-welded SCF results. The table contains
measured values and the corresponding predicted values using Efthymiou parametric
equations and LIoYd’s parametric equations. Based on the SCF/SNCF results of
Specimen T7 presented in Section 7.2, an assumed stress/strain ratio of 1.2 has been
adopted and applied to the as-welded SNCF results in the creation of Table 8-1.
Table 8-2 presents the ratios between measured as-welded SCFs and predicted
SCFs.

Actual measured geometries have been used in Table 8-1 for the derivation of
predicted SCFs. The table presents predicted and measured SCFs for both the
chord side and brace side in all four loading conditions. The saddle and crown

positions are presented separately for the axial tension and compression cases.
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8.3

8.4

8.5

The majority of predicted as-welded SCFs are to within 15% of the measured as-
welded SCFs. It is seen that the Efthymiou parametric equations generally yield a
closer prediction to the measured as-welded SCF than that of the Lloyd’s equations.

Grouted Measured SCFs

Table 8-3 presents a summary of grouted SCF results for all specimens. The table
contains measured SCFs for both the chord side and brace side in all four loading
conditions. The saddle and crown positions are presented separately for the axial

tension and compression cases.

Measured vs Predicted Reduction Factors

Table 8-4, presents a summary of predicted and measured RFs. This table was
generated using the measured grouted SCFs contained in Table 8-3 divided by the
measured as-welded SCFs contained in Table 8-1. Table 8-4 also presents the
predicted RFs as derived using equations developéd in Appendix Q and Appendix
R. :

Ultimate Strength

Table 8-5, presents a summary of the measured results for the ultimate strength test
and the predicted failure loads using formulations from Design
Recommendations'®, The predicted values give good correlation to the measured

values.

1t is noted that five of the specimens failed with a true joint failure. The remaining
seven specimens failed with a brace failure, with the exception of specimens T3 and
DT3 which reached test rig capacity. These seven specimens were, however,
extremely close to joint failure and are therefore of interest. The ratios of predicted

to measured capacities are therefore shown in italics for these seven specimens.
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9.1

9.1.1

CONCLUDING REMARKS

SCF Determination

As-welded SCF

Results presented in Section 7.3 indicate comparable values between the tension side
and compression side SNCFs under in-plane bending and out-of-plane bending load.
This is observed for the chord side and brace side SNCFs and is consistent for both

the T-joint specimens and DT-joint specimens.

The results presented in Section 8.2 generally demonstrate good correlation between
the measured and predicted as-welded SCFs. The predicted as-welded SCFs were
derived using the Efthymiou parametric equations and Lloyd’s parametric equations,

which were typically to within 15% of the measured as-welded SCFs.

A detailed examination of the results presented in Section 8.2 reveals that the SCF
prediction perform better for the chord side locations. The SCF predictions
perform equally well for the DT-joint and T-joint specimens. Generally, the chord
side as-welded SCF is higher than the brace side as-welded SCF and therefore, the

accuracy of predicted as-welded SCFs is more critical for the chord side.

The variation between measured and predicted as-welded SCFs can be attributed to
a number of factors. The most likely cause for variation can be assigned to the size
and profile of the weld. This is particularly true at the saddle location as may be
inferred from the results presented in Section 8.2, for the axial and out-of-plane

bending loading conditions.

The Efthymiou equations for the derivation of as-welded SCFs perform well and
recognising that these equations represent the most popular and preferred set by the

offshore industry, it is recommended that the Efthymiou equations are adopted.
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9.1.2 Grouted SCFs

Results presented in Section 7.4 indicate a variation between the tension side and
compression side grouted SNCF values under in-plane bending and out-of-plane
bending loads. The corresponding as-welded SNCF results show little difference
between the tension side and compression side. The variation is attributable to the
variation in stiffness, afforded by the presence of groﬁt, between the saddle and
crown locations. The results indicate that the highest SNCF variation, i.e, between
the tension side and compression side, is dependent on the specimen joint type, on
which side is being considered (chord side or brace side) and on the geometric
parameters B and y. For the majority of specimens the side which yields the highest
SNCF on the chord is opposite to the side causing the highest SNCF on the brace,
i.e. if the compression side SNCF is highest on the chord, then generally the tension
side SNCF is highest on the brace. In addition, the trend remains constant, with the
exception of Specimen T3, throughout the SNCF measurement/preload regime
applied to each specimen, i.e. regardless of load history the dominant SNCF

remains on the same side for in-plane and out-of-plane bending.

The results indicate that the presence of grout enhances the stiffness of the chord
wall under compressive loading at the crown location. Under in-plane bending and
axial load the resultant chord side and brace side SCFs are higher than for the as-
welded condition. The stiffness at the saddle location has less effect on SCFs due to
the membrane action of the chord wall. Although the crown SCFs increase from the
as-welded condition to the grouted condition, the saddle SCFs generally remain
dominant for the DT-joint specimens. It is therefore concluded that the grouting of

the DT-joint will reduce the dominant SCF and therefore increase fatigue resistance.

The grouted SCFs are similar to the as-welded SCFs at the crown location for the
T-joint specimen.. Given that the crown SCF is dominant in the grouted condition
and in some instances greater than the dominant saddle SCF in the as-welded
condition, it is concluded that grouting of the T-joint may reduce fatigue resistance.

This observation is based on the test results obtained for Specimen T3.
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9.2

9.2.1

RF Determination

The results presented in Section 8.4 demonstrate good correlation between the
measured RFs and those derived using the developed formulations, as presented in

Appendix Q and Appendix R.

The developed RF formulations are of general applicability, i.e. the SCF for a
grouted joint can be estimated by the procluct of the predicted RF and an as-welded
SCF value obtained from any one of a number of sources. The derivation of RFs
using formulations developed in Appendix Q may make use of as-welded SCFs

obtained from one of the following sources.

e  SCF calculated from a Finite Element analysis of the as-welded joint
. SCF measured from steel specimens
. SCF measured from photoelasticity specimens )

The derivation of RFs using.formulations developed in Appendix R may make use

of as-welded SCFs obtained from the following source:
. SCF calculated from a suitable parametric equation

RF for Application to As-Welded Measured SCEs

The form of the equations for the derivation of RFs to be utilised in determining
grouted SCFs using measured as-welded SCFs are presented in Tables 9-1 and 9-2
for chord side and brace side respectively. The tables also contain ranges of

validity.
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RF = ay +a;B + a;v + a;By + a,p° but RF 2 0.10

Joint Load ag a; ay a3 ay
Type (Position) _
DT COMP - 1.46 -3.1 -0.045 | . 0.05 2.5
(Saddle)
COMP 4.10 -4.0 -0.240 0.37 0.2
(Crown)*
TENS 0.43 -1.6 0.025 -0.05 2.5
(Saddle)
TENS -0.92 3.2 0 0.05 -1.5
(Crown)*
iPB 1.28 -0.33 -0.040 0.03 -0.15
(Crown)
OPB 2.25 -3.8 -0.045 0.04 2.6
(Saddle) ,
T COMP 1.37 -1.1 -0.05 0.06 -0.3
{Saddle)
COMP | 1.35 0.2 ~0.05 0.05 -0.5
{Crown)
TENS 1.35 | -2.3 -0.01 0.01 1.2
(Saddle)
TENS 0.75 1.1 -0.02 0.01 -0.6
(Crown)
IPB 1.54 -0.6 -0.04 0.04 0
(Crown)
OPB 1.77 -2.4 -0.03 0.03 0.9
(Saddle) :

Ranges of validity: 0.4 <p<1.0,12<y<26,1~1.0,0 = 90°

E

Table 9-1:

Unduly conservative RF may be predicted at crown position for
axially loaded DT joints.

Recommended formulations for reduction factors on chord side
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RF = a, +a,B + ayy + a3Py + ap’ + asy2 but RF 2 0.10

Joint | Load g E: 1Y a aj a4 ag

Type | (Position)

DT COMP 1.64 -3.7 -0.04 0.04 3.0 0
(Saddle)
COMP -5.36 32.0 -0.12 0.16 -25.8 0
(Crown)*
TENS 0.07 -0.30 0.03 | -0.06 15. |0
(Saddle)
TENS 2.0 2.5 -0.15 0.26 -2.27 | 0.003
(Crown)*
IPB 1.05 -0.21 0.02 | -0.02 0.8 0
(Crown) :
OPB 3.04 -5.5 -0.04 0.03 3.6 0
(Saddle)

T COMP 1.36 -1.6 -0.04 0.05 0.4 0
(Saddie)
COMP 11.84 | -10.6 -0.40 0.04 -0.05 [ O
(Crown)
TENS 1.6 2.4 -0.02 0.02 1.1 0
(Saddle)
TENS 10.33 | -10.0 -0.34 0.33 0.9 0
(Crown)
IPB 0.5 1.5 0.01 0 -1.0 0
{Crown) _
OPB 2.09 -3.2 -0.015| 0.01 1.5 0
(Saddle)

Ranges of validity: 0.4 <B<1.0,12<y<26, t1~1.0, 6 =90°

Table 9-2:
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Non-conservative RF may be predicted at crown position for axially -

loaded DT joints.

Recommended formulations for reduction factors on brace side
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9.2.2 RE for Application 'to As-Welded Efthymiou SCFs

The form of the equations for the derivation of RFs to be utilised in determining
grouted SCFs are presented in Tables 9-3 and 9-4 for chord side.and brace side
respectively. The resultant RFs are applicable to grouted SCFs derived using
Efthymiou parametric equations. The tables contain ranges of validity.

RF = ay +a;B + a5y + a,By + a,B* + asy’ but RF = 0.10

Joint Load ay a, a, a; a, ag

Type (Position)

DT COMP 0.57 -2.08 0.001 | -0.003 | 2.55 0
Saddle)
COMP 4.9 -1.7 -0.32 0.15 -1.15 0.005
(Crown) ’
TENS 0.25 -1.28 0.03 -0.047 | 2.2 0
(Saddle)
TENS 3.9 -2.9 -0.2 0.04 1.01 0.004
Crown)
IPB 1.8 -0.08 | -0.08 0.07 -1 0
(Crown)
OPB 2.35 -5.15 | -0.03 0.03 4 0
(Saddle)

T COMP 1.07 -0.68 | -0.043 0.06 -0.53 0
{Saddle)
COMP -0.55 6.9 -0.03 0.01 -4.8 0
Crown) -
TENS 0.87 -1.49 0.001 0.01 0.65 0
{Saddle)
TENS -1.37 7.4 0.02 -0.05 -4.3 0
Crown)
IPB 0.45 1.5 -0.01 -0.01 -0.7 0
{Crown)
OPB 1.56 -2.62 | -0.012 0.015] 1.3 0
(Saddle)

Ranges of validity: 0.4<B<1.0,12<y<26, t1~1.0,6 = 90°

Table 9-3: Recommended formulations for reduction factors on chord side
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RF = ag +a;p + a;y + a;py + a4|32 + a5~{2 + a6B3y3 but RF >20.10

Joint | Load a, a; a a3 ay as ag

Type | Position

DT COMP -0.01 |-1.3 0.04 |-0.08 315 |1 0 0
(Saddle)
COMP 1.1 0.56 { -0.056 | 0.09 [-1.78 | 0.001 | O
(Crown) _
TENS 1.92 |[-4.4 |-0.08 0.1 34 0.001 | -0.001
(Saddle)
TENS 1.37 |-3.09 [ 0.002 | 0.07 1.39 | -0.001 0
(Crown)
IPB 2.45 [-35 |-0.03 0.03 2031 0 0
(Crown)
OPB -0.43 | -0.64 | 0.096 | -0.17 3.8 0 0
(Saddle)

T COMP 1.25 | -1.64 | -0.036 | 0.04 0.8 0 0
{Saddle)
COMP -1.26 | 5.0 0.002 | 0.03 }-3.3 0 0
{Crown) 5
TENS 0.72 |-0.7 |-0.008 | 0.004 | 0.5 0 0
(Saddle)
TENS 2.86 |-2.9 |-0.09 0.1 0.7 0 0
(Crown)
IPB 0.31 0.91 }{ -0.007 | 0.015 {-0.7 0 0
{Crown)
OPB 0.88 |-0.84 | 0.001 | -0.016 | 0.6 0 0
(Saddle)

Ranges of validity: 0.4 <B<1.0,12<y<26,1~1.0,6 = 90°

Table 9-4:

C14100R020 Rev 1 February 1997
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9.3 Ultimate Strength Determination

The results presented in Section 8.5 demonstrate good correl

measured and predicted ultimate joint capacity.

ation between the

The following equation is essentially that derived in Design Recommendations®™

An allowance for the presence of axial and moment loads in the chord has been

removed as this is beyond the scope of work for this project.

A minimum grout

strength of 41.4 Nmm? at 28 days must be achieved as the strength of grout affects

the strength of a grouted joint. The following equation is based on a mean

prediction rather than a characteristic prediction as used in the comparison between

predicted and measured ultimate Joint capacities presented

Appendix S.

in Table 7-10,

The moment capacity of a grouted joint subjected to unidirectional loading may be

derived as-follows:

F T%d
Mi’ Mo = Qu Y :
sin®

M; = strength for brace in-plane moment load

M, = strength for brace out-of-plane moment load

...8.3.1

Fy = characteristic yield stress of the chord member at ihe joint {or 0;7 times the

characteristic tensile strength if less). If characteristic values are not

available specified minimum values may be substituted.
T = chord wall thickness
d = brace diameter.
® =  brace/joint intersect angle

Q, is a strength factor which varies with the joint and load type.
Table 9-5.
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Joint Configuration
Load Direction
T DT

In-plane bending 1.5By 1.5By
Out-of-plane bending 1.5By 1.5By/ fQ ;
Notes:

Qk =10 for $ <0.6

= 0.3/p(1 - 0.833p) for § > 0.6

Table 9-5:  Q, factor for grouted joints
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Welding Procedure

. -

Crown

11

chord

3
13 5
Saddle ./<

<

7

The weld shape locations are presented in the following Figure A. 1.

Brace

‘ cc;l
__bel

cs;5 bs;5

(cs;13),  (bs;13)

brace

bc;9

| cc;9
chord

Note: Weld shapes measured at 45° intervals around joint intersect

Figure A.1: Location of weld shapes
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: Lasmethode beschrijving fov nr.: 4
: weiding procedure specification GESTNT. (rems by
. C.W.R. Hoogenboom
kiant (ciang: inspactie gnsp. by): HSM ordemr.:
TNO BOUW DELFT ' . - 21227
tospassing [sope): Welding of iestpieces T7-T9/DT8-DT9 tekening nr.:

Grouted tubuiar joint technology for strengthening/repair

———-—-———-—-—-——_.___—_____%

1 Fe 360 or equal CE - afm, dimy
basismateriaal 0.D. 406.4 / Wt 7.9-18
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2 Fe 360 or equal CE - atm, (aim.):

_ OD.> 1683 /Wt 8
lasproces grondizag (ool vulisag {fing pass) tegenias Hackwsiding) Cplassen {overiay welding)
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AWS Class: E7018-1

| kx |
15° ‘
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fig®
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—_k
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posilles (pos.):
wolgens {ace.);
Inspeciie: ® mi/pt: others:
{nspection} - 1 o0% Vs
QA dept, HSM: customen: Inep. awsh.:
datme -
{date) 230193
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Grouted tubular joint technology for strengthening/repair

— "

_ wpS nr.: 150
W Lasmethode beschrijving revac: |
welding procedure specification Geschr. orep. byl:
C.W.R. Hoogenhoom
kiant (chent): inspectie fosp. by): HSM ordernt.:
TNQ BOUW DELFT - 21227
toepassing scopsWelkding of testpieces T1-T3-15/DT2-DT3-DT4-D15-DT6 tekening ar.;

1 Fe 360 or equal CE - afm. w@im):
ﬁmﬁw : , 0.D. 406.4 / Wt 7.9-16
' 2 _Fe 510 or equal CE =< 0.43 |afm. m:
0.D.= 168.3/ Wt 7.9-16
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weicing process) gkt SMAW vi:  SMAW " NA ok: NA
lasposiﬁe_ _ hectiten gackweiding): Procas (process) min. temp.
(welding pasition) 2G /TWY| As per tackweld procedure [, Na T > o'C
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voorwanmdetails (pre-heating detaile): isalatis gnsulsiion): nawarmtijd (soaking time):
NA ; NO NA
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(postweid heattr.) NA
AWS Class: E7018-G : Qualified joints: All-TKY
k,
15° l\l
45%
L n
= b
7 S JE AT l-.
v I
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we) - ‘.:::. w.m:«hn m} [shieidingges/fhud idesuc) + amphmge voage | vmin, | Kimm ] POUmm
1 Root KRYO 1 an - [ an5-100 4 - taj2e | wm-m
2 m KRYO 1 o . AC 0110 4 R 12/20 | as-12
i-n Fivesg | KAVD 40 - AC 158 - 179 24 - 14712 | 1200
b 9 (prapad weldedges) baweridng teg: of roa:
Flame-cutting and grinding NA
opmarking (remasks):
Weid area shall be dry and free of scale, rust eic.
mnppodnr.(pqr.u.l:- geidigheidsgebied MmX {vaiidily range proc. qualification): mﬂﬂmw::l‘\ﬁm
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- AWS D1.3'94 AR ASME IX and AWS D1.1
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WELD SHAPE SPECIMEN DT2

Intersection between Chord and Brace 1 of DT2

C;l L3 S5

L7

Weld shape dimensions [mm)]

Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weldleg [C,1 |3 [S,5 |57 |C9 L1l |S,13  |Li5
length .

Lomee  |25.8  |262 |283 |242 (218 217 |327  |267
Lawa |13.8  [127 |90 |135 |34 |106 |52 |94




WELD SHAPE SPECIMEN DT2

Intersection between Chord arid Brace 2 of DT2

C:1

I;3

S;5

1.7

I;11

Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions {mm]

Weld leg | C,1 L3 S,5 L7 C,9 L11 5,13 1,15
length '

Lirace 26.2 29.6 30.7 24.7 22.2 25.0 30.7 26.4
Lenord 17.2 12.3 11.6 15.3 15.9 13.5 11.6 13.5
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WELD SHAPE SPECIMEN DT3

Intersection between Chord and Brace 1 of DT3

Gl I;3 S;5 . I,7

L 2 .
. 0 S—

,dLéVQ Cu L\\aﬂ’-
C9 I;11 : S;13 I;15

(ot )
Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weld leg | C,1 L3 S,5 L7 C,9 11 S,13 I,15
length _ .
Lyrace 22.7 23.4 25.7 23.4 27.8 26.4
Levord 17.9 12.4 12.8 18.4 9.8 14.9
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WELD SHAPE SPECIMEN DT3

Intersection between Chord and Brace 2 of DT3 |
Gl I3 | $;5 T7

Key :-
| - Intermediate weld position
C - Crown weld position ‘
S - Saddle weld position *

Refer to -Figure A.1 for corresponding numbered weld shape locations. k

Weld shape dimensions [mm]

Weld leg | C,1 L3 S,5 L7 C,9 IL11 $,13  [L1S

length

Lirace 232 (224 22.3 24.9 26.2 24.7 .
Lichord 17.6 10.5 113.4 16.2 10.1 13.0
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WELD SHAPE SPECIMEN DT4

Intersection between Chord and Brace 1 of DT4

C;1 I;3 S5

I;7

Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm)]

Weld leg | C,1 L3 S,5 1,7 C,9 I11 S,13 1,15

length :

Lirace 21.1 19.3 19.5 18.2 . |[22.7 22.7 24.7 18.7

Lenord 14.8 13.7 13.2 17.3 14.9 12.6 8.4 12.6
Page All




WELD SHAPE SPECIMEN DT4

Intersection between Chord and Brace 2 of DT4 . : - ‘

C:1 L3 . S;5 I.;7

I - Intermediate weld position
c - Crown weld position
s - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weldleg |C,1 |13 S,5 L7 co |11 [S,13 [Ll5
length

Lyrace 21.9 20.0 23.1 2.2 [ 23.9 19.9 23.9 18.4

Laoa 180 150 (177 |127 |185 |12.1 |140 [13.1 |
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WELD SHAPE SPECIMEN DTS5

Intersection between Chord and Brace 1 of DTS

C;1

L;3

S:5

L7

C
S

Intermediate weld position
Crown weld position
Saddle weld position
Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weld leg | C,1 I3 S,5 1,7 C,9 1,11 S,13 L15
length | '

Liyrace 17.6 19.7 19.4 20.5 15.5 22.1 20.3 20.9
Lehora 13.1 14.2 10.1 13.9 15.9 15.8 10.2 11.7




WELD SHAPE SPECIMEN DT5

Intersection between Chord and Brace 2 of DT5
Gl I;3 S;5 I,7

_._.'..__...._.._,_._-_‘--.
N

! /
: | |
Key :- _
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered Wcld shape locations.

Weld shape dimensions [mm]

Weldleg |C,1 |L3 S,5 1,7 C,9 I,11 S,13 L15
length
Lyrace 18.4 18.1 17.8 19.1 15.5 17.7 18.0 17.6

Lebord 15.9 13.0 10.6 12.3 15.0 11.9 10.2 11.3 \




WELD SHAPE SPECIMEN DT6

Intersection between Chord and Brace 1 of DT6

C;1

I3

S;5

I,7

Weld shape dimensions [mm]

9 L1l S;13 L5
- B f |
'; P f i

I S
! . 0/‘ ! ’ i
(1 e
¢ ¥
Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld leg | C,1 L3 S,5 L7 C,9 IL11 5,13 L15s
length

Ly ace 18.0 18.6 22.6 20.2 20.0 21.3
Leetiord 13.07 7.7 7.1 15.1 6.6 6.9




WELD SHAPE SPECIMEN DT6

Intersection between Chord and Brace 2 of DT6
C;1 I;3 S;5 L7

v ! I : : ; e P |
. ! ' ' | l : : ! ;
. i
i -
; | B
. * M I E 5 . 9—‘. -
C;9 ;i1 _ S;13 I;15
. . : ] i : ' :
! i 3 : i |

ﬁ_____““_"
B
Ko,

Key :- ,
I - Intermediate weld position
C - Crown weld position
s - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm)]

Weld leg | C,1 1,3 S,5 1,7 C,9 111 [S,13 [L15
length

Lirace 242 |21.8 24.1  |22.3  |21.1 19.6
Leporg 163 |9.6 9.7 133|113 14.2




WELD SHAPE SPECIMEN DT38

Intersection between Chord and Brace 1 of DTS

C:1

I;3 S:5

L7

C

S

- Intermediate weld position
- Crown weld position
- Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions fmm]

Weldleg | C,1 L3 S,5 L7 C)9 L1l [5,13 L15
length

Lirace 23.4 23.2 20.3 21.2 20.2 19.7 24.3 18.7
Lebora 12.1 9.8 10.4 14.6 16.6 12.0 10.1 10.7




WELD SHAPE SPECIMEN DTS

Intersection between Chord and Brace 2 of DT8

C;1 I;3 S;5 I;7

Key :- |
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weld leg | C,1 L3 |S,5 L7 C,9 I,11 S§,13 L15
length '

Lirace 193 |19.4 |203 |21.3 |21.0 [20.0 {208 |22.9 |

Laoa | 112|137 [9.8 12.8 |16.7 |16.1 |115 [13.9 |
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WELD SHAPE SPECIMEN DT9

Intersection between Chord and Brace 1 of DT9

Gl I3 853 _ L7

C:9 T - E 115

Key :- :
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm}

Weldleg | C,1 L3 S,5 L7 C9 |Ll1 S,13 L15
length

Lirace 21.8 17.2 17.9 24.3 20.8 20.3
Lenord 14.1 7.1 8.7 12.8 1.9 8.4

%
N




WELD SHAPE SPECIMEN DT9

Intersection between Chord and Brace 2 of DT9

C:1

I;3

S;5

I,7

S:13

R G

Pl

C
S

- Intermediate weld position
- Crown weld position
- Saddie weld position
Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weld leg | C,1 1L3 S,5 L7 C,9 Lil S,13 L15

length

Lirace 24.1 23.2 20.8 23.7 24.7 26.2
15.4 8.5 6.4 14.3 9.3 7.3

Lchord




WELD SHAPE SPECIMEN T1

Intersection between Chord and Brace of T1

C:1

I;3

S:5

I;7 '

L;15

C
S

- Intermediate weld position
- Crown weld position
- Saddle weld position
Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions {mm]

Weld leg | C,1 L3 S,5 1,7 C,9 IL11 S,13 1,15
length

Lorace 20.6 23.0 22.0 20.3 22.5 22.7 27.5 25.2
Leyord 18.0 12.2 17.0 14.1 20.2 13.5 14.8 17.0




WELD SHAPE SPECIMEN T3
Intersection between Chord and Brace of T3
Gl I;3 8;5 L7
P
. : i }
J ' o
: ' ‘ !
i ) '
' : l : ! f
o0 =
| J o ol o
CHexdi l . ' 4 '
o “Tx°
; . - )
C;9 I;15

C

S

Intermediate weld position
Crown weld position
Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

_Weld shape dimensions [mm] '

Weld leg | C,1 1 L3 S,5 L7 C,9 L11 S,13 I,15
Iength

Layeace 23.0 22.6 23.6 24.6 20.7 24.1
Lihora 13.9 . 8.1 7.2 14.0 8.6 10.0




WELD SHAPE SPECIMEN TS5

Intersection between Chord and Brace of TS

C;l

I;3

S;5

I;7

C
S
Refer to Figure A.1 for corresponding numbered weld shape locations.

- Intermediate weld position
- Crown weld position
- Saddle weld position

Weld shape dimensions [mm]

Weld leg | C,1 L3 S,5 L7 C9 Lil S,13 L15
length ‘

Luyrace 21.7 18.6 20.0 18.2 20.0 . |20.2 22.6 19.9
Lenora 17.7 15.7 11.4 13.5 14.3 13.0 10.5 12.1




WELD SHAPE SPECIMEN T7

Intersection between Chord and Brace of T7

C;1 I;3 S;5 1,7

Key :-
I - Intermediate weld position
C - Crown weld position
S - Saddle weld position

Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm}

Weld leg | C,1 L3 S,5 L7 C,9 I11 S,13 K15
length
Lirace 13.6 14.3 16.5 12.7 12.8 14.9 14.0 15.4

Lhora 11.9 7.7 8.6 8.6 13.1 7.6 11.8 9.9




WELD SHAPE SPECIMEN T9

Intersection between Chord and Brace of T9

C:l

I3

S;5

I,7

- C
S

- Intermediate weld position
- Crown weld position
- Saddle weld position
Refer to Figure A.1 for corresponding numbered weld shape locations.

Weld shape dimensions [mm]

Weldleg [C,1 {13 S,5 L7 C,9 L1l S,13 L15
length :

Lirace 15.6 16.1 14.7 15.0 15.6 17.2
Lihord 13.1 9.5 10.4 12.2 9.5 7.7
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APPENDIX B

Specification and Procedure for Grouting of Test Specimens

C14100R020 Rev 1 February 1997
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INTRODUCTION

This document presents a detailed procedure for the chord grout-filling of tubular
joints to be used as test specimens in a Joint Industry Project (JIP) on the
‘Development of Grouted Tubular Joint Technology for Offshore Strengthening and
Repair’.

The tubular joints will be used for SCF tests for the ungrouted and grouted
conditions. Once tests are complete for the ungrouted condition, grouting can
commence in accordance with the specifications and procedure presented within this
document.

This document makes reference to the following American Standards:-

L API Specification 10 - Specification for Materials and Testing
for Well Cements _
®  ASTM Specification C150 -  Standard Specification for Portland
Cement.
C14100R006 Rev 2 January 1995 Page 4 of 10
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2.1

2.3

2.4

GROUT FILLING OF SPECIMENS

neral ripti
The tubular joint specimens comprise T joints and DT/X Joints. Each of the tubular
joints is to be chord grout-filled for SNCF measurements and subsequent ultimate
strength tests.

The tubular joints are to be cast with the chord placed in the vertical position. This
will ensure complete grout filling of the chord and reduce the number of parameters
to consider when interpreting test results. Displacement of water whilst grout filling
will be a requirement since grouting offshore in strengthening/repairs will also
displace water.

The grout mix and testing specification shall conform to Section 3 herein.

Tubular joints shall be grout-filled using the same procedures, mixing equipment and
facilities. This will ensure consistency in grout mix, test cube preparation, grout
placement and grout strength once cured. Grout mixer capacity may limit the number
of specimens that can be grouted in one operation. In this case measures will be
taken to ensure consistency between batches.

rout Connpecti
Grout connection arrangements are shown in Figures 2.1 and 2.2.

Fof each tubular joint, one inlet shall be provided at the base of the vertical chord
and the outlet in either the top cover plate or the top of the chord. The operation of
all valves shall be checked, prior to fitting.

All connections shall be well greased. The grout inlet shall be attached to the chord
at the grout inlet point. All grout shall be input through this point.

Filling Chord with Water

The vertical chord members shall be filled with water prior to grout filling. Any
leaks identified shall be remedied prior to the grouting operation.

Grouting the Tubular. J oints

This operation shall follow immediately after successful filling of the chord with
water. .

C14100R006 Rev 2 January 1995 Page 5 of 10
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2.4.1 Mix grout

Grout shall be mixed to a specific gravity of 2.02 + 0.02 for Oilwell or
Portland cement (see Section 3.2 for cement specification). Confirmation of
the specific gravity shall be carried out using a pressurised mud-balance. If
acceptable, samples will be taken for grout cubes. If the specific gravity is
not within the limits specified above, grout shall be mixed untl desired
density is achieved. Samples for grout cubes will then be taken.

See Section 3 for mixing, sampling and testing of grout.
242 utin tion

L Ensure grout inlet hose is free of any obstructions, ‘kinks’ or ‘crimps’
when connected to test specimen.

. Open inlet valves.
L Begin pumping grout through the inlet hose. Pump continuously.

] When good consistency grout flows from the chord outlet point,
continue pumping slowly, and take density measurements.

* Following confirmation of satisfactory grout densities, stop pumping,
and close inlet valves. Disconnect quick release coupling and
reconnect to next specimen. Open inlet valves and begin pumping.
When good consistency grout flows from the outlet point, continue
pumping slowly and take density measurement. Repeat this cycle for
subsequent tubular joints.

L Once all tubular joints are grouted, disconnect grout inlet at quick

release union connection, open valve connected to inlet line and pump
water down the grout inlet line, to flush.

2.4.3 Sh toppa,

If a blockage occurs during grouting of a specimen, adopt the following
procedure:-

Stop pumping

Close both inlet valves at inlet point. Disconnect grout line at quick release
union connection.

Open grout line inlet valve.
Begin pumping slowly.
C14100R006 Rev 2 January 1995 Page 6 of 10
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If no grout flows, change the inlet grout hose. If grout flows, the problem is
not in the hose. Therefore, it is a fault either in the inlet valve, the outlet
hose or in the tubular specimen.

Reconnect grout inlet and open inlet valve. Begin pumping. If grout does not
flow, then a piece of wire inserted through the outlet point may prove
successful in removing any blockage there. If grout still does not flow then
the blockage is at the inlet valve or within the tubular specimen and the
following course of action may be taken.

. Abort the grouting operation, remedy the fault at the inlet valve or
from within the tubular specimen and instigate flushing procedures.

Specimens successfully grouted prior to blockage, shall remain grouted.

2.4.4 Longer stoppages

In the event of a grout flow problem or delay during grouting operations of
a specimen, where such delays may exceed one hour, chord flushing
procedures must start. '

2.4.5 Flushing procedure

Flushing must be carried out if grout flow problems occur which may delay
operations for more than one hour.

Specimens successfully grouted prior to blockage, shall remain grouted.

1] Disconnect grout inlet at quick release union connection, open valve
connected to inlet hose and flush inlet hose. Wash out grout mixer.

@) Inspect all valves and ‘rake out’ where necessary.

(i) Flush specimen through either the inlet or outlet points.

2.5 Post Grouting Procedure

Immediately after satisfactory grouting, close all inlet valves, disconnect at quick
release union, open valve connected to inlet hose and flush the grout inlet line.

C14100R006 Rev 2 January 1995 Page 7 of 10

M

i

i
l




3.1

3.2

3.3

GROUT MIX AND TESTING SPECIFICATION

Design Requirements

All grout to be used shall achieve a minimum compressive strength of 41.4 N/mm?2
(6000 psi) at 28 days.

Materials

Cement shall be class ‘B’ or ‘G’, moderate sulphate resistant oilwell cement to API
Spec 10. Altemnatively, moderate sulphate resisting Portland Cement to ASTM C150
Type II may be substituted and used in the same proportions.

Manufacturer’s Certificates of Quality with respect to the materials shall be obtained
before use.

The cement shall be stored and transported in accordance with the manufacturer’s
instructions. The cement shall be kept free from moisture at all times and a careful

visual inspection of all materials shall be made prior to their use to ensure their
suitability for the work. Cement shall be stored out of direct sunlight.

Drinkable water is to be used for mixing, with a temperature not exceeding 20°C.

Grout Mix Proportions

The grout mix shall be as follows:-

Cement - 100 parts by weight

Water - 34 parts by weight (for Oilwell or Portland cement)
NO ADMIXTURES SI—IALLl BE PERMITTED

Figure 3 shows the rate of gain of strength for Oilwell ‘B’ grouts cured at 8°C
(46°F). This is based upon extensive onshore and offshore test data collated from

many years of grouting experience.

C14100R006 Rev 2 January 1995 Page 8 of 10

il
il
il

un

(o
1l
Jsn

I




geara

3.4

3.5

3.6

3.7

Grout Mixing

The grout shall be mixed using a suitable mixer (eg. Craelius CEMIX 175 or
Colcrete DD4). An initial mix shall be made to line the mixer. This mix shall be
discarded. Subsequent batches shall be used to grout the specimens. All batches
shall be mixed for a minimum of two minutes.

larry Density Measuremen

Measurement of slurry densities shall be made using a pressurised slurry density
balance in the manner described in API Spec. 10. Particular attention shall be paid
to ensure that the external surfaces of the balance are cleaned and dried after filling
and prior to balancing.

Grout shall not be pumped until a specific gravity within the limits noted in Section
2.4.1 is achieved. Slurry densities shall be checked immediately prior to pumping
and throughout the grouting operations, sampling every batch mixed.

Cube Preparation and Curing

Cubes shall be cast in accordance with API Spec. 10, with the exception that 75mm
(3 inch) cubes shall be used.

The cubes shall be placed in polyurethane bags immediately after casting and cured
with and at the same temperature as the grouted joints until removed for demolding
or testing.

Cubes may be demolded after 24 hours, during which the time out of the bags must

not be more than 1 (one) hour. At or after 28 days, cubes shall be weighed,
measured and crushed within 30 minutes of removal from the bags.

The cube age shall be measured from the time the cube is struck to the time it is
crushed. '

Each cube shall be marked with a unique mark and this mark correlated with the

batch number, specimen number, time and date made and slurry density, as measured
by a pressurised slurry density balance.

Sampling and Testing Procedures
For each batch 4 N° cubes are to be cast from the grout in the grout mixer.

From the 4 N° cubes cast from the grout in the mixer, three (3 N°) cubes shall be
tested at 28 days. :

An additional 8 N° cubes are to be cast for each grouted test specimen.
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From the 8 N° cubes cast with each specimen;
f

Three (3 N°) cubes shall be tested at or after
of SCF tests on each grouted specimen.

28 days on the commencement
Three (3 N°) cubes shall be tested at the commencem,
tests on each grouted specimen.

ent of ultimate strength
Each cube shali be crushed in accordance with the
except that the rate of loadin
per min),

procedure given in API Spec. 10,

g will be no faster than 14 N/mm? per min (2000 1bf/in2

The following information shall be collated for the final report;-

® Test specimen identification reference
°

Cube identification reference
°

Time and date of casting of the cube and test specimen
o

Time and date of testing of the cube and test specimen

Fluid grout depsity at time of casting
°

Weight and density of the grout cube
e

Failure load and cube strength
o

Average strength from 3 N° cubes tested at 28 days.
°

strength test on each grouted specimen.
3.8

Average strength from the 3 N° cubes tested at commencement of SCF test
on each grouted specimen and 3 N° cubes tested at commencement of ultimate
Eguipment

Calibration certificates are to be supp

and cube crushing equipment.

lied for all weighing, balancing, cube making

C14100R006 Rev 2 January 1995
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BALL VALVE
ﬁ/ (CHORD INLET VALVE)

!
- RITECAM
L " (OR SIMILAR) QUICK RELEASE

ﬂ'ﬁ
BALL VALVE (GROUT !

LINE INLET VALVE) \

i
;
S -

GROUT HOSE FROM
GROUT MIXER,

1. DIMENSIONS TO ALLOW CLEARANCES TO OPERATE VALVE HANDLES.
2. ALL VALVES TO BE 12 BALL VALVES.

FIGURE 2.1. ARRANGEMENT OF CHORD GROUT INLET.
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FIGURE 2.2. ARRANGEMENT OF CHORD GROUT OQUTLET.
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Appendix C1 Grout material properties

The compressive strength from the cubes were determined and are presented in Table C-1.

Batch | Duration*| Specimen| Cube 1 Cube 2 Cube 3 Avera&
Taken 7 days - 24.9 23 - 23.95
from 14 days - 34.6 33 - 33.80
mix 21 days - 45 35 - 40.00
drum 28 days - 36.3 33.7 - 35.00
1 . S-'D1/D2{ 40.7 45.2 51.4 45.77
2 " TS 29.7 26.2 44.9 33.60
3 " T3 DT4 36.3 36 34.2 35.50
4 " T9 DTS 33.8 46 31.4 37.07
5 " DT2 DTS 42.3 33. 42 39.10
6 " T7 Ti1 40.1 28.6 43.8 37.50
7 " DT9 DTe 337 36.6 34.7 35.00
8 " DT3 39.8 46.3 29.6 38.57

*after chord filling

Table C-1: Compressive strength per batch after 7, 14, 21 and 28 days from chord
filling (MPa) i

Specimen | Cube 1 Cube 2 Cube 3 Cube d | Average

T1 37.00 33.60 39.30 46.30 39.05

T3 34.50 37.60 38.30 38.20 37.15

- T3 34.60 41.90 49.00 47.50 43.25
T7 52.40 39.20 38.60 44.00 43.55

T9 42.90 43.80 42.30 37.00 41.50
DT2 41.40 46.30 46.30 4790 4548
DT3 33.70 52.30 50.00 48.90 51.23
DT4 42.10 39.40 33.80 41.00 39.08
DT5 47.30 52.90 49.10 48.40 49.43
DT6 47.50 43.70 43.10 45,50 44 95
DT8 53,50 51.90 33.00 49.30 46.93
DT9 52.80 50.30 41,30 31.60 49.05

Table C-2: Compressive strength at time of specimen ultimate test (MPa)
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Appendix C2 Cross section

During the grouting procedure two additional tubes (D=350 mm) were grouted and cured
inside the laboratory (i.e. D1 & D2). Approximately 6 months after grouting one tube
was sliced. The results are presented in Figures C-1 and C-2. Cracks within the grout core
were not observed. The gap between grout and inside wall of the tubular was extremely

fine.

Figure C-1: Cross section of tube fully grouted
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APPENDIX D
Tensile coupon tests
The material properties from the certificates are listed in table D-1. For each reference

pipe, two tensile coupon tests have been performed. The yield stress and tensile strength
(ultimate strength) are listed in Table D-2 and Table D-3 respectively.

SPECIMEN CERTIFICATE
Yield str. Brace |Yield str. Chord |Ult. str. Brace |Ult. str. Chord
Tl 376 318 538 415
T3 397 318 596 415
T5 365 345 503 435
T7 278 351 395 539
T9 351 351 539 539
DT2 355 318 490 415
DT3 397 318 596 415
DT4 395 345 534 435
DT5 365 345 503 435
DTé6 360 345 575 435
DT8 353 351 470 539
DT9 331 351 339 539

Table D-1:Material properties from certificates (MPa).




SPECIMEN | LOCATION |REFERENCE YIELD STRESS ULTIMATE
TUBULAR a b average a b average
DT4 Braces 1 3304 | 3484 | 3394 | 547.0 | 553.0 [ 550.0
Brace 2 3274 | 368.1 | 3478 | 520.9 | 519.6 | 520.3
Brace 3 382.5 | 384.0 | 3833 | 5799 | 5833 | s81.6
Brace 4 263.8 | 227.5 ] 24577 | 4093 | 400.9 | 405.1
DT8 Braces 5 3155 1 341.8 ] 3287 | 5116 | 5082 | 35099
DT4,DT5,DT6,T5 | Chord 6 332.2 | 336.8 | 334.5 | 426.4 | 4275 | 427.0
DT8,DT9,T7,T9 |Chord 7-1 3478 | 340.1 | 3440 | 5073 { 499.5 | 503.4
DT9,T9 Braces 7-2 319.9 | 3185 | 319.2 | 496.2 | 4950 | 4956
DT2,DT3,T1,T3 |Chord 8 346.0 | 371.0 | 3585 | 502.8 | 511.4 | 507.1
DT5,T5 Braces 9-1 276.2 | 301.5 | 288.9 | 4099 | 406.1 | 408.0
Braces 9-2 2759 } 2809 | 2784 | 4082 | 407.7 | 408.0
DT6 Brace 10 365.8 | 361.0 | 3634 | 508.1 | 508.3 | 508.2
DT2 Brace 1] 489.0 | 302.4 | 4957 | 571.2 | 5992 | 5852
Table D-2: Tensile coupon tests on pipe sections (MPa)
SPECIMEN COUPON
Yield Str. Brace{ Yield Str. Chord| Ult. Str, Brace | Ult, Str. Chord

T1 347.8 358.5 520.3 307.1

T3 383.3 338.5 281.6 507.1

TS5 283.6 334.3 408.0 427.0

T7 245.6 331.6 405.1 499.5

T9 331.6 331.6 599.5 499.5

DT2 495.7 358.5 585.2 507.1

DT3 383.3 358.5 581.6 507.1

DT4 33%.4 334.5 350.0 427.0

DTS5 283.6 3345 408.0 427.0

DT6 363.4 334.5 508.2 427.0

DT8 328.5 331.6 509.9 499.5

DTS 331.6 331.6 499.5 4995

Table D-3: Tensile coupon tests referenced by test speciment (MPa)
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Appendix E1 Piece Reference

For the fabrication of test specimens, eleven different tubulars were used. From each type of
tube the wall thickness was measured at four points around the circumference. The pieces
used for the fabrication of the test specimens are shown in Table E-1

DT-/ T-Joint Brace 1 Chord Brace 2
. DT2 11 8 11
DT3 3 8 3
DT4 1 6 1
DTS5 o 6 9
DTé6 10 6 10
DTS8 5 7 5
DT9 7 7 7
T1 2 8 -
T3 3 8 -
T5 9 6 -
T7 4 7 - .
T9 7 7 -

Table E-1: Tubular references for specimens.
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Appendix E2 Wall thickness measurements

The wall thickness measurements were taken using a micrometer. Table E-2 presents
reference tubular wall thickness measurements taken before specimen fabrication. Table
E-3 presents sample specimen wall thicknesses measured at one chord end after

fabrication.

The wall thickness for the braces and chords were also checked by Ultra

Sonic measurements and are presented in Tables E-4 and E-5 respectively.

MEASUREMENTS
End1 End 2
Tub. Ref. | Average} 0° 90° 180° | 270°| 0° 90° | 180° | 270°
1 9.95 952 | 9.64 | 1041 [1002] 9.69 |10.51] 10.371 9.40
2 1632 [1622116.68] 1638 | 16.16] 16.51 ]| 16.54 | 16.11 | 15.96
3 1610 | 17.17}17.39] 15.11 | 15.19] 17.25] 16.54 | 15.151 15.02
4 8.31 846 | 8.30 8.23 8031830 | 819 | 8.16 | 8.77
5 7.88 782 | 798 ] 817 | 769 ] 790 | 7.76 | 812 | 7.57
6 1025 1005|1060 997 |10.47]10.03[10.78 | 1042 | 9.66
7 7.90 8.05 | 8.44 7.74 7.54 § 8.03 | 793 | 768 | 7.78
7 8.06 | 7.50 7.43 778 | 765 | 790 | 799 | 7.70
7 791 | 838 | 784 | 775} 8.14 | 8.00 | 8.09 | 8.19
8 1674 | 1692} 1732] 16.00 | 1645y 16.57|17.34{ 16.97 | 16.52
8 17.14} 17.39| 16.84 | 17.00] 16.08] 16.26 | 16.59 | 16.40
9 082 §1958[984] 1000 [ 985 ] 9.81 | 9.68 | 985 } 9.96
10 9.62 963 | 936 | 975 | 997 ] 957 1 939 | 9.85 | 9.43
. 11 1576 11588 15.45| 15.70 | 16.24} 15.86} 15.65] 15.62 | 15.68
Table E-2: Wall thickness measurements using a micrometer.
MEASUREMENTS
Tub. Ref.| Part | Average 0° 90° 180° | 270° |

DT4-C 1038 | 10.95 10.70 994 | 9.94
DT5-C 9.80 9.49 8.78 10.10 | 9.84
DT6-C 10.33 10.11 10.67 10.02 | 10.51

DTS8-C 8.13 8.46 8.01 798 | 8.05
DTS-C 7.48 7.17 7.83 742 | 7.50

DT2-C 16.32 | 15.77 16.50 17.25 | 15.77
DT3-C 16.00 15.80 16.29 15.52 | 16.37

00 0o|~] 3| O O

Table E-3: Sample specimen measurements using a micrometer
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MEASUREMENTS
: Brace 1 Brace 2

Tub, Ref, | Part | Average| 0° 90° 180° | 270° | 0° | 90° | 180°] 270°

1 DT4-B | 10.19 | 10.40 9.80 9.90 | 10.60 J10.00] 0.60 | 10.40] 10.80

2 TI-B | 1640 | 1580 | 1640 | 17.00 | 16.40

3 DT3-B | 16.46 | 1590 | 16.10 | 17.20 | 16.20 |15.40{17.40]17.10] 1830

3 T3-B | 1588 | 1680 | 1520 | 15.10 | 16.40

4 T7-B 8.30 8.50 8.40 830 | 8.00

5 DTS-B | 8.18 8.40 8.30 820 | 7.80 [ 840[8.10]810] 810

7 DT9-B | 7.91 7.80 7.70 800 | 810 |7.80] 7.80 | 8.10 | 8.00

7 T9-B 8.10 8.10 8.00 8.00 | 830

9 DT5-B | 9.98 1040 | 10.00 | 970 | 990 | 9.80|10.20]10.00] 9.80

9 T5-B 9,98 1010 9.90 990 | 10.00

10 DT6-B | 9.93 9.80 9.90 10.20 | 970 ]10.00]10.00] 9.60 |10.20

11 DT2-B | 1605 | 1620 | 1600 | 1630 | 16.50 [16.00|15.40]15.80(16.20

Table E-4: Brace ultra sonic wall thickness measurements

MEASUREMENTS
Tub. Ref| Part |Average| 0° | 90° | 180° | 270°
6 T5-C | 9.83 | 9.70 | 9.80 | 9.40 | 10.40
6 DT4-C | 10.53 [10.50| 9.90 |11.20{10.50
6 DT5-C| 9.73 | 9.90] 9.40| 9.90 [ 9.70
6 DT6-C | 10.57 |10.90}10.10].10.70
7 DT8-C| 825 | 8.50| 8.50 | 8.00 | 3.00
7 DT9-C| 7.78 [ 8.10| 7.70 | 7.30 | 8.00
7 T7-C | 805 |7.70| 8.10| 8.10 | 8.30
7 T9-C | 8.25 | 7.90] 7.90 | 8.50 | 8.70
8 DT2-C | 16.18 {16.30[16.00]16.10] 16.30
8 DT3-C | 17.03 |17.00]17.50]16.70| 16.90
8 T1-C | 16.23 |15.80|16.10!16.50116.50
8 T3-C | 16.05 |15.90]16.10{15.70] 16.50

Table E-5: Chord ultra sonic wall thickness measurements




Appendix E3 Diameter Measurements

The diameter measurements for the reference tubulars and for the specimens (chord and
braces) are presented in Table E-6 , Table E-7 and Table E-8, respectively.

— MEASUTEMENIS

End 1 End 2
Tub. Ref, | Average| 0°/180° | 90°270°| 0°/180° |90°/270°
1 168.73 | 16940 | 168.60 | 168.10 | 168.80
2 16783 | 16790 | 167.90 | 167.70 | 167.80
3 20728 | 40690 | 407.30 | 407.90 | 407.00
4 16853 | 167.70 | 16930 | 168.40 | 168.70
5 27335 | 273.30 | 273.70 | 272.70 | 273.70
6 20645 | 407.00 | 405.10 | 406.20 | 407.50
7 20680 | 40630 | 407.30 | 405.30 | 408.30
8 40656 | 406.60 | 406.60 | 406.60 | 406.70
8 40670 | 406.10 | 40630 | 406.90
9 27320 | 273.00 | 27320 | 273.40 | 273.20
10 20748 | 408.60 | 406.50 | 406.90 | 407.90
. 11 37300 | 27290 | 273.10 | 273.10 | 272.90

Table E-6: Specimen diameter measurements

MEASUREMENTS
End1 End 2

Tub. Ref. Part | Average 0°/180° | 90°/27(° | 0°/180° | 90°/270°

1 DT4-B | 163.41 | 16849 | 168.71 | 168.31 | 168.12

2 T1-B 167.80 | 167.90 | 167.70

3 DI3-B | 407.03 | 405.00 [ 40530 | 408.90 | 408.90

3 T3-B | 406.75 | 405.50 | 408.00

4 T7-B 168.30 | 168.70 | 167.90

5 DI8-B | 273.08 | 274.80 | 273.50 | 272.30 | 271.70

7 DT9-B | 403.45 | 404.10 | 402.80

7 T9-B | 407.50 | 405.80 | 409.20

9 DIS-B | 273.22 | 27413 | 27411 | 272.23 | 272.42

9 T5-B | 273.60 | 27440 | 272.80

10 DT6-B | 407.73 | 404.60 | 404.90 | 411.40 | 410.00

11 DT2-B | 273.19 | 27298 | 272.57 | 273.87 | 273.33

Table E-7: Brace diameter measurements
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MEASUREMENTS

Tub. Ref. | Part | Average| 0°/180° | 90°/270°
6 DT4-C | 407.05 | 404.10 | 410.00
6 DT5-C | 406.78 | 411.58 | 401.98
6 DT6-C | 407.86 | 408.16 | 407.55
6 T5-C | 407.10 | 404.60 | 409.60
7 DTS8-C | 406.90 | 415.60 | 398.20
7 DT9-C | 407.77 | 411.76 | 403.77
7 T7-C | 407.80 | 405.60 | 410.00
7 T9-C | 407.65 | 407.50 | 407.80
3 TI-C | 407.70 | 407.20 | 408.20
8 T3-C | 407.20 | 40730 | 407.10
8 DT2-C | 406.76 | 407.96 | 405.56
8 DT3-C | 405.90 | 406.50 | 405.30

Table E-8: Chord diameter measurements
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Appendix E4 Summary of measured dimensions

Table E-9 presents a summary of the average actual dimensions.

CHORD BRACE
SPECIMEN|Tub, Ref] D T  |Tub. Ref.] d t
Tl 8 406.78 | 16.39 2 167.81 | 16.32
T3 8 406.78 | 16.39 3 407.02 | 16.1
TS 6 407.05 | 10.19 9 273.34 | 9.82
T7 7 406.96 | 7.86 4 16841 | 831
T9 7 406.96 | 7.86 7 406.96 | 7.86
DT2 8 406.78 | 16.39 11 273.09 | 15.76
DT3 8 406.78 | 16.39 3 407.02 | 16.1
DT4 6 407.05 | 10.19 1 16857 | 9.95
DTS 6 407.05 | 10.19 9 273.34 | 9.82
DT6 6 407.05 | 10.19 10 4076 | 9.61
DTS 7 406.96 | 7.86 5 27321 | 7.88
DT9 7 40696 | 7.86 7 406.96 | 7.86

Table E-9: Summary of averaged measured dimensions
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F-1.

INTRODUCTION

The objective of the grouted joints test programme was to measure Strain Concentration
Factors (SNCFs) for both ungrouted and grouted T and DT tubular joints of various
geometries.

There are three aspects which need consideration to enable the correct measurement of
strains. These are as follows:

0 adequate number of strain gauges and correct positioning to enable extrapolation
of strain to the weld toe.

0 adequate number of strain gauges around the circumferential chord/brace
intersect to enable interpolation to the hot spot location.

o rosette gauges are required to enable measurement of principal strains when the
principal stress direction is not orthogonal to the chord/brace intersect.

These aspects are addressed in Section 2 which also details current guidance for gauge
positions to enable measurement of strains and extrapolation to the weld toe. The strain
gauge instrumentation used for the test specimens is contained in Section 3.




BACKGROUND

Determination of SNCFs at the weld toe can be carried out using either linear or non-
linear extrapolation of strain measurements. Either method should not be influenced by
the stress concentrating effect of the weld. With the exception of K and Y joints
(ungrouted), determination of SNCFs in tubular joints can generally be carried out using
linear extrapolation. Due to the variation in gauge locations between each method, it is
therefore important to either predict which type of extrapolation is required or make
provision for both.

Very little test data exist for SNCF measurements on grouted tubular joints. The type of
extrapolation to be used is not known and therefore it is necessary to bound the
possibility of either linear or non-linear extrapolation.

Table F-1 presents recommended strain gauge positions for the test matrix based on the
following guidance:

0 HSE and ECSC give essentially the same guidance for strain gauge locations to
enable linear extrapolation to the weld toe.

o DNV recommends the first strip gauge location to be 0.25T (where T is the
thickness of the tubular) from the weld toewith four subsequent strip gauges at
2 mm centres, for linear extrapolation.

0 R S Puthli, et al, give guidance for gauge locations to enable either linear or
non-linear extrapolation.

All the above state that the first strip gauge should be located a minimum 4 mm from
the weld toe in order to avoid the concentrating effect of the weld. The guides attempt
to position the gauges in the region of stress linearity, between the region effected by the
weld and where the stress becomes equal to the nominal stress.

Puthli, et al, go one step further by giving guidance for the location of gauges to enable
non-linear extrapolation, te. quadratic extrapolation.

For any of the above methods, extrapolation is made from several strain gauge
measurements. This, therefore, influences the number of gauges required to enable
either linear or non-linear extrapolation.

Specimen T7, used for the preload investigations and the first specimen to be tested in
the grouted condition, was instrumented with addtitional rosette gauges. The resultant
SCF/SNCF ratio results were utilised to determine the requirement for the use of rosette
gauges on the remaining grouted specimems.
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F-3. STRAIN GAUGING

Table E-2 presents the strip gauge positions utilised on the specimens to enable either
linear or non-linear extrapolation. The gauge region, ie. between the first and last
gauges, was sufficient to adequately bound the variation and increase in stress towards
the chord/brace intersect. A sufficient number of gauges were mounted, as shown in
Figures F-1 and F-2, on both the brace and chord side of the intersection to enable
determination of the hot spot location.

The first, third and fifth gauges of the strip gauge were connected. The first gauge
position was 0.4 x (T or t) but not less than 4mm. The HSE recommended first gauge
position coincided or was interpolated within the strip gauge. A single gauge was
placed at the HSE recommended last gauge position. The second and fourth gauges in
each strip acted as contingency, should one of the nominated gauges fail to function.

For both joint types all B. = 1.0 specimens were gauged with additional intermediate
gauges between crown and saddle positions on the chord side and brace side. Specimen
T9 was instrumented with a full set of gauges on the chord side and brace side. This
enabled an assessment of strain distribution around the intersect.

Additional strain gauges are provided on the brace(s) to enable measurement of nominal
axial strains and brace bending strains. Depending on joint type, gauges were placed as
follows:

T joints

Saddle and crown locations on both the chord and brace as shown in Figure F-1.
Additionally for B = 1.0 test specimens, two diagonally opposite quadrants were
instrumented with a further two sets of gauges, at equal spacing, on both the chord and
brace.

DT joints

Saddle and crown locations on both the chord and brace as shown in Figure F-2.
Additionally for B = 1.0 test specimens, the appropriate quadrant on each brace was
instrumented with a further two sets of gauges, at equal spacing, on both the chord and
brace.

Table F-1 presents the strain gauge positions for the first and last gauges for each of the
specimens. These positions include the HSE recommendations and bound the gauge
positions from the other formulations.
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Intermediate gauges @
30° & 60° positions on both
braces are for B = 1.0 joints.

Note:

Strip gauge, consisting of 3 strain gauges, 3 of which are used
= Single strain gauge

Ne: of gauges per specimen

B=0.41& 0.67 B=1.0
Location . Single . Single
Strip gauges gauges Strip gauges sauges
Brace 4 12 (+4) 8 (+4) 16
Chord 4 4 +4)8 (+4) 8
Total R 16 (+8) 16 (+8) 24

Note:

The first § = 1.0 joint tested was gauged with a full compliment of gauges, by

providing additional intermediate gauges.( )

Figure F.1: Strain Gauging of T-joint Specimen




Key:.

Note: Intermediate gauges @
30° & 60° positions on both

braces are for = 1.0 joints.

A - +_,,__.____ﬂ,_._____w
I

0 0

_— Strip gauge, consisting of 5 strain gauges, 3 of which are used
- Single strain gauge

N of gauges per specimen

B=041&0.67 p=10
Location Strip gauges ;::éi:s Strip gauges :’;_Szfs
Braces 4 16 (+6) 8 (+6) 20
Chord 4 4 (+6) 8 (+6) 8
Total 8 20 {(+12) 16 (+12) 28

Note:

The first B = 1.0 joint tested was gauged around the full compressive side of brace
& gauged around the full tensile side of the other brace for 1.P.B.

Figure F.2: Strain Gauging of DT-joint Specimen
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Appendix G 1 Nominal distance from weld toe to strain gauges for SNCF
measurement

Strips with five strain gauges, followed by a single strain gauge at the HSE recommended
last gauge position, were placed at predefined positions in order to determine a Strain
Concentration Factor (SNCF). The distance between the five gauges on the strip was 2
mm. In the following text, the distance between the weld toe and the first gauge on the
strip is denoted by ., and the distance between the weld toe and the last (single) strain
gauge by 1 .., . The first, third and fifth single element strain gauges of the strip gauge
and the last single strain gauge were used for interpolation and extrapolation of SNCFs..
The nominal positions of the strain gauges used to measure the SNCFs at certain locations
are based on the average dimensions of the test specimen, see Table E-9,

The positions used are presented below:

CHORD 1 min = greater of 0.4 T or 4 mm for (cc), (cs)
Lx =04 RTr) ™ for (cc)
L max = R 7 5/180 for (cs)
BRACE 1 min = greater of 0.4 t or 4 mm for (be), (bs)
- L ax = 0.65 (r ) for (bc), (bs)

The nominal distances from the weld toe to the first and to the last strain gauges are given
in Table G-1. The distance of the last strain gauge to the weld toe for the two
intermediate positions between crown and saddle, for test specimens T3, T9, DT3, DT6
and DT9, were determined by linear interpolation of the last strain gauge positions for the
crown and saddle positions. The distance to the side of the chord for the nominal brace
strain gauges are given in Table G-2.

The reference numbers for the gauge positions are given in Figure G-1.

s 1 5, . 'cc;1
Ny | be:
N 4 M
- 4 css—|— bs;s
> N -
N, 9| \s T;C.Q bee
chord ;
chord

Figure G-1: Position of strain gauges at intersection of brace and chord

Note: * Strain gauge positions at 30° intervals.
* Locations 2, 4, 6, 8, 10, 12, 14 and 16 represent intermediate gauge positions.
Page G2




Figure G~2: Strain gauge rosettes placed besides the strip and single gauges (T7)




Specimen CHORD BRACE Chord Crown| Chord Saddle| Brace Crown | Brace Saddle
Gaugel | Gauge5 | Gaugei | GaugeS5| Gauge 6 Gauge 6 Gauge 6 Gauge 6
T1 6.62 14.62 6.53 14.53 18.53 17.75 24.05 24.05
T3 6.62 14.62 6.44 14.44 23.05 17.75 37.21 3r.21
15 4.08 12.08 4.00 12.00 16.34 17.76 23.81 23.81
T7 4,00 12.00 4.00 12.00 13.01 17.76 17.19 17.19
T8 4.00 12.00 4.00 12.00 16.01 17.76 26.02 26.02
DT2 6.62 14.62 6.30 14.30 20.75 17.75 30.15 30.15
DT3 6.62 14.62 6.44 14.44 23.05 17.75 37.21 .
DT4 4.08 12.08 4.00 12.00 14.53 17.78 18.82 18.82
DTS 4.08 12.08 4.00 12.00 16.34 17.76 23.81 23.81
DTe 4.08 12.08 4.00 12.00 17.96 17.76 23,76 28.76
DT8 4.00 12.00 4.00 12.00 14.48 17.786 21.32 21.32
D19 4.00 12.00 4.00 12.00 16.01 17.76 26.02 26.02
Note: Gauge number refer to figure G-3

Table G-1: Distance of strain gauges from weld toe (mm)

Brace First Second
1 1.8%d 3.2%d
2 1.8*d

Table G-2: Distance of circumferencial gauges on brace from joint intersect (mm).

1

2

3 4

5

Chord/Brace
Intersect

Strip Gauge

.|2mm| I21'nmI l21-nmI '2mm.

6

Single Element

Gauge

Figure G-3: Diagram indicating position of gauges.




Appendix G 2 Actual distance from weld toe to strain gauges on DT2

The actual distance from the weld toe to the first and last strain gauge for test specimen
DT2 is given in Table G-3.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 ! Gauge 1 | Gauge 6
S;5,brl 6.8 19.8 6.1 29.5
C;9,brl 6.3 20.3 6.4 29.6
C;1,br2 6.8 21.2 6.6 30.5
S;13,br2 6.6 15.6 6.3 28.3

=g "tﬁ""f
. . [¢-]

Saddle
Crown
Location of
gauge

Brace
Intermediate
position

Table G-3: Actual distance from weld toe to first and last strain gauges on DT2 [mm]

Appendix G 3 Actual distance from weld toe to strain gauges on DT3

The actual distance from the weld toe to the first and last strain gauge for test specimen
DT3 is given in Table G-4.

Position CHORD SIDE BRACE SIDE
Gauge | | Gauge 6 | Gaugel | Gauge 6
C;1,brl 6.4 23.0 6.0 37.6
I;2,brl 6.5 21.4 6.4 37.3
I;4,brl 6.4 20.3 6.5 37.4
S:5.brl 6.5 19.5 6.3 37.3
C:9.br2 ! 6.5 22.9 6.5 37.3
1:10,br2 6,6 21.3 6.5 37.2
1,12,br2 6.4 19.8 6.4 37.1
S;13,br2 6.5 19.5 6.5 37.3

1) 3.5 mm from crown

Table G-4: Actual distance from weld toe to first and last strain gauges on DT3 [mm]




Appendix G 4 Actual distance from weld toe to strain gauges on DT4

The actual distance from the weld toe to the first and last strain gauge for test specimen

DT4 is given in Table G-5.

Position CHORD SIDE BRACE SIDE -
Gauge 1 | Gauge6 ! Gaugel | Gauge 6
C;1,brl 4.1 14.5 4.1 18.8
S:5,brl 4.1 17.8 4.1 18.8
C:9,brl 4.1 14.5 4.1 18.8
S:13,brl 4.1 17.8 4.1 18.8
C:1,br2 4.1 14.5 4.1 18.8
S:5,br2 4.1 17.8 4.1° 18.8
C,9,br2 4.1°" 14.5 4.1 18.8
S;13,br2 4.1 17.8 4.1 18.8

1) Middle strain gauge inactive of strip
2) First strain gauge inactive of strip

Table G-5: Actual distance from weld toe to first and last strain gauges on DT4 [mm]

Appendix G 5 Actual distance from weld toe to strain gauges on DTS

The actual distance from the weld toe to the first and last strain gauge for test specimen
DTS5 is given in Table G-6.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gaugel | Gauge 6
C;1,brl 5.8 18.3 4.4 23.6
S;13,brl 4.0 17.2 4.3 23.8
S;5,br2 4.7 18.1 4.0 23.6
C;9,br2 4.1 16.6 4.3 21.6

Table G-6: Actual distance from weld toe to first and last strain gauges on DTS [inm]




Appendix G 6 Actual distance from weld toe to strain gauges on DT6

The actual distance from the weld toe to the first and last strain gauge for test specimen
DT6 is given in Table G-7.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge6 | Gaugel | Gauge 6
C;1,brl 4,1 17.1 4.0 29.0
1;2,brl 4.0 17.0 4.0 29.1
I;4,brl 4.1 17.2 4.0 28.8
S;5,brl 4.1 17.5 4.0 28.7
C;9,br2 4.0 17.2 4.0 28.4
I;10,br2 4.0 17.4 4.0 28.8
1,12,br2 3.6 17.7 4.0 28.8
S;13,br2 4,1 17.8 4.0 29.0

Table G-7: Actual distance from weld toe to first and last strain gauges on DT6 [mm]
Appendix G 7 Actual distance from weld toe to strain gauges on DT$

The actual distance from the weld toe to the first and last strain gauge for test specimen
DTS8 is given in Table G-8.

Position CHORD SIDE BRACE SIDE )
Gauge 1 Gauge 6 | Gauge | Gauge 6

C;1,bri 4.0 16.7 3.5 21.6

S;13,brl 4.0 17.0 4,2 21.5

S;5,b12 4.2 18.7 4.5 22.3

C;9,br2 4.0 17.0 4.0 21.2

Table G-8: Actual distance from weld toe to first and last strain gauges on DT8 [mm]
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Appendix G 8 Actual distance from weld toe to strain gauges on DT9

The actual distance from the weld toe to the first and last strain gauge for test specimen
DT9 is given in Table G-9.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gaugel | Gauge 6

C;1,brl 4.0 * 16.5 4.0 26.0
I;2,brl 4.0 16.8 4.0 26.0
I;4,brl 4.0 17.5 4.0 26.5
S;5,brl 4.0 17.8 4.5 - 26.5
C;9,br2 4.0 16.5 4.0 26.0
I1;10,br2 4.0 * 16.8 4.0 26.5
1,12,br2 4.0 17.5 4.0 25.5
S;13,br2 4.0 17.8 4.0 26.0

*) Average distance to weld toe.

Table G-9: Actual distance from weld toe to first and last strain gauges on DT9 [mm]

Appendix G 9 Actual distance from weld toe to strain gauges on T1

The actual distance from the weld toe to the first and last strain gauge for test specimen T1
is given in Table G-10. :

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gaugel | Gauge 6
C;1 6.0 18.75 6.5 24.1
S:5 6.2 18.0 6.5 24.5
C:9 6.5 18.5 6.5 23.8
S;13 6.0 17.9 6.5 24.1

Table G-10: Actual distance from weld toe to first and last strain gauges on T1 [mm}




Appendix G 10 Actual distance from weld toe to strain gauges on T3

The actual distance from the weld toe to the first and last strain gauge for test specimen T3

is given in Table G-11.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gauge l | Gauge 6
C;l 6.6 23.0 6.5 37.9
;2 6.5 21.3 6.3 37.6
I;4 6.5 19.6 6.5 37.1
S:5 6.4 18.9 6.5 36.8
C;9 6.5 21.4 6.4 36.9
I,10 6.5 21.5 6.5 36.9
1,12 6.5 19.5 . 6.4 37.0
S:13 6.5 19.0 6.5 37.2

Table G-11: Actual distance from weld toe to first and last strain gauges on T3 [mm]

Appendix G 11 Actual distance from weld toe to strain gauges on T5

The actual distance from the weld toe to the first and last strain gauge for test specimen T3
is given in Table G-12.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge6 | Gaugel | Gauge 6
C;l 4.1 16.0 4.0 23.8
S;3 4.1 17.5 4.0 23.5
C;9 4.1 16.2 4.2 23.8
S;13 5.0 - 17.0 4.0 24.4

Table G-12: Actual distance from weld toe to first and last strain gauges on T5 [mm]




Appendix G 12 Actual distance from weld toe to strain gauges on T7

The actual distance from the weld toe to the first and last strain gauge for test specimen T7
is given in Table G-13.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gauge 1l | Gauge 6
C:1 4.0 16.1 4.2 17.4
S;5 4,2 17.8 4.0 17.3
C;9 4.0 16.1 4.0’ 17.7
S;13 4.0 17.6 3.9 17.2

1) Middle strain gauge strip inactive

Table G-13: Actual distance from weld toe to first and last strain gauges on T7 [mm]

Appendix G 13 Actual distance from weld toe to strain gauges on T9

The actual distance from the weld toe to the first and last strain gauge for test specimen T9
is given in Table G-14.

Position CHORD SIDE BRACE SIDE
Gauge 1 | Gauge 6 | Gaugel | Gauge 6
C;1 4.1 16.6 4.0 26.0
I;2 4.0 16.5 3.9 25.9
L4 4.2 17.0 4.0 25.7
S:5 3.8 17.6 3.8 26.2
L6 4.0 17.0 4.1 26.0
I:8 4.1 16.7 4.0 26.2
C:9 3.8 16.6 40° 25.8
110 4.0 16.9 4.0 25.8
1,12 4.0° 17.0 3.8 25.9
S;13 4.1° 17.8 3.9 25.7
I:14 4.0° 17.2 4.0 25.8
1:16 3.8 16.5 4.0 25.8

1) 3,5 mm from crown in direction of 16
2) 3,5 mm from crown in direction of 10
3) Second strain gauge of strip inactive
4) Last strain gauge of strip inactive

5) First strain gauges of strip inactive

Table G-14: Actual distance from weld toe to first and last strain gauges on T9 [mm]




oy

—r

APPENDIX H

Transducer Positions

C14100R020 Rev 1 February 1997







R

e

APPENDIX H

Transducer Positions
Table of contents

Appendix H-1 Joint 